ITS 413 Internet technologies and
application

By:
Thanyatorn Parapuntakul(5222791824)
Tanapoom Kongarsa(5222792509)

Chavamon Srisak(5222790305)

28 march 2012

By submitting this report all members of the group listed above agree that each
member has contributed approximately equal amounts to designing and performing
experiments, as well as to preparing this report. All members agree that this report
accurately reflects the experiments conducted by the group members, and is their own
work (not works of other groups).

Sirindhorn International Institute of Technology

Thammasat University

Content

Aim
Network Diagram
Equipment specification
Experiments
TCP vs UDP
Impact of packet drops on TCP performance
Multiple TCP sessions
TCP sessions vs UDP sessions

Appendix

11
19
32
37

Aims

1. To study and understand about UDP and TCP

2. To find out what factor will impact on TCP performance
3. To understand about the sessions

4. To study to use command in terminal

Network Diagram

Figurel : Wireless network

Laptopl (Server) Laptop2 (Client)

Figure2 : Wired network

Laptopl (Server) Laptop2 (Client)

Equipment Specifications

Server

Toshiba Protege T230
Processor intel core i3 cpu 1.33GHz
Broadcom WLAN 802.11bgn

Ubuntu linux

Client

Dell Inspiron n-series
Processor intel core i7 cpu 2.0GHz
Intel Centrino Wireless-N 1030

Ubuntu linux

Router

Linksys wrt54gl|
Version Backfire

10.03.1 with the Broadcom Linux 2.4 kernel

LAN cable

Buffalo CAT-6 Flat Network cable
Cable type: UTP-4

Straight Cable

Connector Type: RJ-45
Connector

Cable: Twisted

Experiment

There are four experiment that we perform in this assignment
1.TCP vs UDP
2. Impact of packet drops on TCP performance
3. Multiple TCP sessions

4. TCP sessions vs UDP sessions

Experiment 1 TCP vs UDP

In this experiment we will design an experiment differentiate function of TCP and

UDP by changing some parameter and study on that
Experiment 1.1 TCP vs UDP with changing delay

In this experiment, we will try to differentiate TCP and UDP by changing delay and
collect the output to study

So, first we going to do is to open TCP server on computer A

Iperf -s

Next use tc on the computer B

sudo tc qdisc add dev eth0 root netem delay 100ms

This code will tell that the packet will delay for 100ms on interface ethO(wire)

Now let run Iperf on computer B

Iperf—c IP —t 60s

But if we want to change package delay we have to delete the old one first before adding a
new one

We also use this command to delete it

sudo tc qdisc del dev ethO root netem delay 100ms

And then perform every step again

But in our group use the shell script file run in the terminal

forjin {1..4}
do

foriin 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

do

eChO "emmm============== Delay: "${|} mS"==========" >> Outassltcpwde|ay_

S{f}.txt
sudo tc gdisc add dev ethO root netem delay ${i}S{m}
sudo tc gdisc show dev ethO >> outass1ltcpwdelay-S{f}.txt
iperf -c 192.168.1.248 >> outass1tcpwdelay-S{f}.txt
sleep 5s
sudo tc qdisc del dev ethO root netem delay ${i}5{m}
let i=i+10
done
echo "File "${f}" successfully generated"
let f=f+1

done

doing the same with UDP

first, we have to open UDP server on computer A

iperf —s -u

and also use this shell script file to run

m='ms
f=1

s=10

forjin{1..4}
do

foriin 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

do

echo" Delay: "${i} ms"==========" >> outassludpwdelay-S${f}.txt

sudo tc gqdisc add dev eth0 root netem delay ${i}${m}

sudo tc gqdisc show dev eth0 >> outassludpwdelay-${f}.txt
iperf -c 192.168.1.248 -u >> outassludpwdelay-${f}.txt
sleep 5s

sudo tc gdisc del dev eth0 root netem delay ${i}${m}

let i=i+10

done

echo "File "${f}" successfully generated"

let f=f+1

done

TCP Delay

HAVG

14

12 -

T T T T
o 0 {o] <
—

(s/sna) indysnouayy

oV}

1
o

Swo00¢
sSwQoo6T
SwOo08T
SwQoo/T
Swoo9t
SwQoST
sSwQoovt
SWOOET
swoocT
SWQOoTT
Swooot
swoo6
Swoo8
swooL
Swo09
Swo0s
swoov
swooe
swooc
swooT

Delay time

Figure : graph that show our average result for TCP delay

UDP Delay

(z/suqw) indysnoayy

Swo00¢
Swoo6T
Swoo8T
SwooLT
SWwOo09T
SwooST
swoort
SWOoOoET
swooct
SWOoOTT
Swoo0T
SWwo06
swQo8
swQooL
Swo09
Swoos
swoovy
sSwooe
swooc
swoot

Delay time

Figure : graph that show our average result for UDP delay

Summar

As you can see from the graph that show the throughput of UDP will get higher than

the throughput of TCP it cause of the mechanism of TCP lead to result like this

Experiment 1.2 TCP vs UDP with changing jitter

So, now in this experiment we will do the same as last experiment is to differentiate
between UDP and TCP but now changing with jitter

TCP litter

12

—~ 10 -

(]

S~

4]

5 8

=3

£ 6 -

=)

i)

3 4-

§ M AVG
2_

0_
v u u uvn uv u u “v “u u u un u u un u u u un u
E E E E E E E E E E E E £E E E £ £ £ £ €
O O O O O O O O O O O O © O O O O o o o
OO O O O O O O O O O O O O O O O O o o o
- N N < 1N O N 00 OO O 4 NN < 1w N 00O O

T 1 " " - H -+ —H =+ =
Delay time

Figure : graph that show our average result for TCP jitter

UDP lJitter

Bandwidth (Mbits/2)

600ms
700ms
800ms
900ms
1000ms
1100ms
1200ms
1300ms
1400ms
1500ms
1600ms
1700ms
1800ms
1900ms
2000ms

Delay time

Figure : graph that show our average result for UDP jitter

10

Summary

We can summary like the same as last experiment UDP have higher bandwidth
because of it’s didn’t care about reliable so it’s just sent the packet that lead to the higher
throughput

Conclusion

On this experiment we can conclude that the higher throughput of UDP with
compare to TCP throughput is cause of UDP didn’t have a reliable so it’s didn’t care that the
packet will loss or duplicate it just send the packet to the destination but in TCP it’s have a
mechanism that can make it reliable such as error control so, if we want to send all packet
to the destination perfectly please use TCP but if we talk about the speed UDP also have
higher speed but packet maybe lost.

11

Experiment 2 Impact of packet drops on TCP performance
In this experiment we investigate the impact in performance of TCP due to the

packet loss. By compared between wire and wireless connection and tc and iptables
function

Experiment2.1: Use iptables to drop packet on wire network
In this experiment we focus on dropping packet by using iptables on wire network to

make the firewall rule that can detect the packet that coming into the server
First let

rules iptables to randomly dropping packet for 5% on computer A

sudo iptables -A INPUT —m statistic -mode random —probability 0.05 —j DROP

Then, run TCP server on computer A

Iperf -s

Finally, run TCP test with iperf on computer B

Iperf -c IP -t 60s

But we have to increase the dropping rate of iptables rule so, we have to delete the old
rules first before make the new rule using command

sudo iptables -D INPUT 1

Then make the new rule with increase dropping rate and perform all of this step again

20

Wire Network

16 -

14
12

10

M 1st

H 2nd

i 3rd

Throughput (Mbit/s)

H 4th

O N B OO

5% 10% 15% 20%

M 5th

25% 30% 35% 40% 45% 46% 47% 48% 49% 50%

Packet loss

12

Figure : graph that show our result for use iptables to dropping packet with wire network(5

times)
Wire Network

18

16 -
= 14 ~
=
5 12 -
< 10 -
3
£ 8-
2
3 6 H AVG
-
- 4 -

2 .

0 . [=] = —

5% 10% 15% 20% 25% 30% 35% 40% 45% 46% 47% 48% 49% 50%
Packet loss

Figure : graph that show our result for use iptables to dropping packet with wire

network(average value)

Summary

As you can see from the graph, iptables will randomly drop packet perfectly, first

when the packet loss percentage was increased from 5% to 10% throughput will be

dramatically dropped and as the packet loss percentage increased the throughput will

increasingly drop down too.

Experiment 2.2 Use iptables to drop packet on wireless network

In this experiment we will set every parameter and perform every step like the last

experiment but this experiment will use wireless network for the test

Wireless Network

12

=
o
I

o]
|

Throughput (Mbit/s)

5% 10% 15% 20% 25% 30% 35% 40% 45% 46% 47% 48% 49%

Packet loss

B 1st
M 2nd
b 3rd
H 4th
i 5th

Figure : graph that show our result for use iptables to dropping packet with wireless

network(5 times)

Wireless Network

10
2
2 6 -
8
o
S 4
3
o
= 2 -
O_ —

5% 10% 15% 20% 25% 30% 35% 40% 45% 46% 47% 48% 49%

Packet loss

HAVG

Figure : graph that show our result for use iptables to dropping packet with wireless

network(average value)

13

14

Summary

In this experiment, Iptables is doing good like the last experiment but the
throughput of 5% randomly dropping is less than the wired network it’s maybe because of
TCP is design for the wired network so, the wireless net work cannot sent the packet in full
rate.

Experiment 2.3 Use tc to drop packet on wire network

In this experiment we will dropping packet on wire network again but use different
function now in this experiment we will use tc to drop packet, tc is a command to control
the packet queuing mechanisms that it’s also can dropping packet as well

So, first let open the TCP server on computer A

Iperf -s

Next use tc on the computer B

sudo tc qdisc add dev ethO root netem loss 5%

This code will tell that the packet on the kernel will drop 5% on interface ethO(wire)

Now let run Iperf on computer B

Iperf—c IP —t 60s

But if we want to change package loss percentage we have to delete the old one first before
adding a new one

We also use this command to delete it

sudo tc qdisc del dev ethO root netem loss 5%

And then perform every step again

But in our group bring shell script file to use in this experiment to safe the time and make it
easy

mzl%l
f=1
s=10

forjin {1..5}

15

do
foriin 51015 20 25 3035 4045 5051 52 53 5455
do

eChO e L TP Packageloss: "${i}${m}”::::::::::" >> assB-Wired-
loss-S{f}.txt

sudo tc gdisc add dev ethO root netem loss ${i}${m}

sudo tc gdisc show dev eth0 >> ass3-wired-loss-S{f}.txt
iperf-c 192.168.1.248 -t 60 >> ass3-wired-loss-S{f}.txt
sleep 5s

sudo tc qdisc del dev ethO root netem loss ${i}${m}

let i=i+10

done

echo "File "${f}" successfully generated"

let f=f+1

done

And this is our result

Throughput (Mbit/s)

18
16
14
12
10

o N B O

Wire Network

5%

M 1st

H 2nd

i 3rd

10%

H 4th

15%

20%

25%

[———

30% 35% 40% 45% 50% 51% 52% 53% 54% 55%

Packet loss

16

Figure : graph that show our result for use tc to dropping packet with wire network(4 times)

Throughput (Mbit/s)

16
14
12
10

o N B O ©

Wire Network

HAVG

5%

10%

15%

20%

25%

30% 35% 40% 45% 50% 51% 52% 53% 54% 55%

Packet loss

Figure : graph that show our result for use tc to dropping packet with wire network(Average

value)

Experiment 2.3 Use tc to drop packet on wireless network

In this experiment will perform every step like the last experiment but it have to
change the interface from eth0 to wlan because we want to test on the wireless network

Wireless Connection

10
__ 8
<
e
£
S 6
E M 1st
£ M 2nd
n
%n 4
= id 3rd
[
2 M 4th
O pr—

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 51% 52% 53% 54% 55%

Packet loss

Figure : graph that show our result for use tc to dropping packet with wireless network(4

times)
Wireless Connection

10
a8 A
S~
=
K]
2 6 -
=]
3
o
3 HAVG
<
= 2 -

0 i —

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 51% 52% 53% 54% 55%
Packet loss

Figure : graph that show our result for use tc to dropping packet with wireless
network(Average value)

17

18

Summary

For this experiment, that use tc to control the packet queuing mechanism with wired
and wireless network tc can control dropping packet perfectly as you can see form the
graph when the dropping rate was increased the throughput will increasingly drop down too

Conclusion

For all of the experiment that our group was perform in “Impact of packet drop on
TCP performance” such as tc or iptables function for wire and wireless network we can
conclude that the TCP have mechanism that can retransmit lost data and can slow sending
rate when packet was lost so, for all of this mechanism can lead to the whole time sending
rate longer that cause to the lower throughput of the network and also for both function tc
and iptables can dropped perfectly but in tc can dropped more packet than iptables
function it maybe cause of the mechanism of tc that can control the packet queuing
perfectly

19

Experiment 3 Multiple TCP sessions

In this experiment, we will make the scenarios that we have many TCP sessions run to the
server use iperf then study on the throughput that will happen

Experiment 3.1 Multiple TCP sessions by using hand manual to open terminal and run the
test

In this experiment, we try to test the multiple TCP sessions by using hand manual to
open terminal and run the test.

First on the computer A run the TCP server using:

iperf -s

And now on the computer B run a TCP test for 2 sessions (use 2 terminal to run) first :

iperf —c IP

Then, run a 3 sessions and 4 sessions (use 3 terminal and 4 terminal) for 5 times each

From the experiment above we can get the throughput that will show in the result in
graph below

70

M First time

H Second time
M Third time
M Forth time

u Fifth time

First Sessions Second Sessions

Figure: Graph of the throughput that run 2 TCP sessions on five time of test

70

60

AVG

50 -

40 -

30 A

20 A

10 -

B AVG

First Sessions Second Sessions

Figure

: Average value of the 3 sessions throughput

70

M First time

B Second time

= Third time

H Forth time

m Fifth time

First Sessions Second Sessions Third session

Figure

: Graph of the throughput that run 3 TCP sessions on five time of test

20

70

AVG

60

50 -

40 -

mAVG
20 +

10 A

First Sessions Second Sessions Third session

Figure: Average value of the 3 sessions throughput

70

60

50

M First time
40

B Second time

30

= Third time
B Forth time

20
u Fifth time

10

First Sessions Second Sessions Third session Forth sessions

Figure: Graph of the throughput that run 4 TCP sessions on five time of test

60

AVG

50 A

40 -

mAVG

10 A

First Sessions Second Sessions Third session Forth sessions

Figure: Average value of the 4 sessions throughput
Summary
In this experiment we use manually open and run the test on a single iperf server

And as you see from a graph as many sessions increased the more throughput drop down
on the session that add up.

23

Experiment 3.1 Running multiple TCP sessions start at the same time

From the problem of the last experiment that the throughput will depend on the
speed of the hand to run the test and it will not run at the same time. So, in this experiment
we will use shell script file to run the test on the terminal that can help us to open and run
the test at the same time

First, on the computer A doing the same run the TCP server using:

iperf -s

Now, use shell script file to run on the computer B to open many terminal use time = 60s to
run the test:

gnome-terminal --tab -e "iperf -c IP -t 60s"

Then, write this command one more in script to add more sessions in the test:

gnome-terminal --tab -e "iperf -c IP -t 60s"

gnome-terminal --tab -e "iperf -c IP -t 60s"

Save and then run it on terminal
And also increase number of sessions by 1 until 20

From the direction above we get result in the graph below

2 Sessions(Mbit/s)
50
48
46 '
a4 . l'sl')hroughput(Mblt/
42 .)
First sessions Second
sessions
3 Sessions(Mbit/s)
40
30 ~
20 - _
10 | l'sl")hroughput(Mblt/
0 -
First Second Third
sessions sessions Sessions

4 Sessions(Mbit/s)

40
30
20
10 =
0 ' ' ' B Throughput(Mbit
) O S S /s)
& & S S
& L g &
'ﬂé‘ .‘6 \"Q
< N <<0&
5 Sessions(Mbit/s)
30
25
20
15
10
5
0 B Throughput(Mbit
& Qb"' e o & /s)
P & S
& F F S &
< NPT
6 Sessions(Mbit/s)
30
25
20
15
10
5
0 B Throughput(Mbit
6 DT O o & © /s)
‘:)\OQ <.’OQ ‘:’\OQ .\00 L}\OQ ('7\0Q
& L& & & &
4 <& NS
& S E S
7 Sessions(Mbit/s)
25
20
15
10
5
0 B Throughput(Mbit
O DO o © & Lo /s)
C;}OQQ,OOQ(;'—)\OQ ;,\OQ ;_}o“ (;\00% o
e O
<5 NI ‘Q‘o ~<\C’
Q\‘c’ ~(\\‘ o&\Q{\\' ‘9(\’-\’

24

8 Sessions(Mbit/s)

25
20
15
10

H Throughput(Mbit/
s)

-

First.

Second.
Third
Fifth
Sixth
Seventh
Eighth

30
20
15
lg B Throughput(Mbit/
0 . . : T H M H b S)
s 5B £
£ 5 = £ Xt ¢
gh " 2@E
n &

9 Sessions(Mbit/s)

25
20
15
10
5 H Throughput(Mbit/
o- o AERRERRREE
§33 feifss
E6E EXxcecet
S+ weBZ Q2
'z A

10 Sessions(Mbit/s)

11 Sessions(Mbit/s)

H Throughput(Mbit/
s)

]

9 T T £ ccccc.c
A e e I = A B
= 6 .c = X ccccc
I-I-‘_,|_ u_mwun'iwcu
Q > i = >
wn (] ()
(%} o

25

26

B Throughput(Mbit
/s)

12 Sessions(Mbit/s)

30
25
20
15
10

0

“yyemL
"*Yluana|j
S
“YIUIN

R UELE!
""YIU2AaS
YIXIS

R UITE!

TPAYL
""puU023S

“1sd14

B Throughput(Mbit

13 Sessions(Mbit/s)

20
15
10

/9)

“YIUSBMIYL
“YYPmL
“"Yluans|3
U]
““YIUIN
U
“"YIU2A3S
“YIxIS
Yl

TPAIYL
“*puU0IS
IS4l

B Throughput(Mbit

14 Sessions(Mbit/s)

/s)

*]JU991no
YUy L
“YYamL
“Yjuana|3
U]
“YIUIN
LV
""YIUaAnasS
“YIXIS
Yl

“pAIYL
“'PuU023S
115414

B Throughput(Mbit

15 Sessions(Mbit/s)

/s)

...fcmmtc
*"JU=99l4n0o4
“YIUSSMIYL
“YEIML
“"Yjuans|3
i
Y
SULOLE
“"YIUaAsS
"YIXIS
Yy

pAyL
“puU023s
1Sl

16 Sessions(Mbit/s)

25
20 i
15 i
10
st s
g dddddd i it s)
Lo Zeeesessy CHo
=5 EXccccctcoucc
Lo LHOWSVVOVLVD
) >Sn€F>20t 00
v & LELSER

15
10
5 n
0 II I I 1111 ||| B Throughput(Mbit/
dod cedddedddidds s
E5E £EXccceeEcgeey
LOoE LhONS00000DDe
@ >LeE>20t 00T
wv
& pFEZEXS
=l
18 Sessions(Mbit/s)
25
20
15
10
5 .
0 ||||I|||II| I|| | H Throughput(Mbit/
. :::::::::4-3::::_{:: S)
.*_-g_g ERECEEEEEGEEYE
Lo LHhoas0000000=0
b} SIS >2 0P 00Ccw
& (e e e
& SheRE
[2 iy
19 Sessions(Mbit/s)
20
15
10
5 .
o .I,I.I.I,I.I.I,I,I Illllljllllllll B Throughput(Mbit/
gos cocccceccidiidie)
VEC PP obs e S
IOc EXcccockccccgcdu
S S S = e
303395305
» & %—.:E;cg
EoREF

27

20 Sessions(Mbit/s)
20
15
10
5 [| '] »
O T1 'I'IIIII'IIII II'IIIJIIIII!IIIIII .ThroughpUt(Mblt/
::::::::::::_'_3::‘::_::_'_3 5)
LSt ERECPPErETEEYED
Toc =X]
OF— Wwn oL CIJCIJOJOJBCIJGJHG)B
g o
-2
Figure: Graph that show the throughput of each number of TCP sessions

Summary

same time running and it’s show that in TCP mechanism will try to divide each sessions for

In this experiment we run multiple TCP sessions for 2 sessions - 20 sessions in the

fairness but it’s not fair for all 100%

28

29

Experiment 3.3 Multiple TCP sessions running on the different starting time

In this experiment, we design this experiment to make the different from the last
experiment to get the different value of throughput. So, first we will do the same as every
experiment

Computer A run TCP server:

iperf -s

Now, on computer B run the shell script file follow on this picture

That is we need to run each sessions on different starting time and also increase each
sessions by 1

For the first time we start at a sessions set the first sessions to start immediately for 60
second and for the second sessions will start 10 second after the beginning of the first
sessions for 50 second

gnome-terminal --tab -e "iperf -c IP -t 60s"
sleep 10s
gnome-terminal --tab -e "iperf -c IP -t 50s"

Then we need to increase each session by session and also increase the sleep time between
each session and decrease the time for running on that sessions

gnome-terminal --tab -e "iperf -c IP -t 60s"
sleep 10s
gnome-terminal --tab -e "iperf -c IP -t 50s"
sleep 20s

gnome-terminal --tab -e "iperf -c IP -t 40s"

After experiment above we can get the result in the graph below

2 Sessions(Mbits/s)
60
40
B Throughput(Mbi
O T
Session 1 Session 2
3 Sessions(Mbits/s)
60
40
B Throughput(Mbi
20 ts/s)
0
Session 1Session 2Session 3
4 Sessions(Mbits/s)
60
40
20
0 B Throughput(Mbi
ts/s)

N v > ™

N Q Q Q
"7\0 O "7\0 "‘}0

&

&

5 Sessions(Mbits/s)
100
80
60
40 -
20 - B Throughput(Mbi
0 - ts/s)
)
S 5;,\0“% a>°°% «;\°°v o

(_)Q/ (_)Q/“" (,)éo (_)Q/"

30

31

Summary

From this experiment we design a new experiment and we can get the result from
the graph that it will have the higher throughput on the sessions as we compare from the
last experiment so, it will cause of the sessions didn’t run at the same time and it’s will have
some period that some sessions will have a single running or maybe the less sessions run in
the same interval that lead to the higher throughput in some sessions.

32

Experiment4 TCP and UDP sessions

In this experiment we investigate the bandwidth of TCP and UDP that run parallel to
the server Iperf but have different parameter e.g. start time and end time in each
experiment.

Experiment 4.1 Run TCP and UDP at the same time

In this experiment we try to run TCP sessions and UDP sessions together at the same
time starting. So first we going to do is open TCP and UDP server with specific port on
computer A

Starting TCP server on computer A with port 5001

Iperf-s -p 5001

Also, starting UDP server on computer A with port 6001

Iperf -s -u -p 6001

So, what we going to do next is to run TCP session and UDP session on the same time so we
use shell script file to solve this problem

We starting with one TCP and one UDP first:

gnome-terminal --tab -e "iperf -c IP -p 5001 -t 60s"

gnome-terminal --tab -e "iperf -c IP -u -p 6001 -b 100M -t 60s"

Save and run it on terminal

So, what we do next is just increased number of UDP one by one to the server

gnome-terminal --tab -e "iperf -c IP -p 5001 -t 60s"
gnome-terminal --tab -e "iperf -c IP -u -p 6001 -b 100M -t 60s"

gnome-terminal --tab -e "iperf -c IP -u -p 6001 -b 100M -t 60s"

33

And graph below will show our result of this experiment

TCP and UDP at the same time

90

80 -

70

60 - mTCP
S m UDP1
2 50 -
2 m UDP2
© 40 -
'.E W UDP3

30

m UDP4

20 1 m UDP5

10 -

0 .

1TCP 1UDP 1TCP 2UDP 1TCP 3UDP 1TCP 4UDP 1TCP 5UDP

Figure : Graph that show the result of TCP sessions and UDP sessions sending at same time

Summary

From the graph when the clients in the UDP increase cause the linear decrease in
bandwidth of TCP. The cause of decrease in bandwidth of TCP is because the clients in UDP
have come in and have to share the sending rate to UDP.

Experiment 4.2 Run TCP and UDP at different run time.

In this experiment we will run TCP sessions and UDP sessions together at the same
time starting but different in time running. So first we going to do again is open TCP and
UDP server with specific port on computer A

Starting TCP server on computer A with port 5001

Iperf-s -p 5001

Starting UDP server on computer A with port 6001

Iperf -s -u -p 6001

So, next is to run TCP session and UDP session on the in different running time

We starting with one TCP and one UDP first:

34

gnome-terminal --tab -e "iperf -c IP -p 5001 -t 60s"

gnome-terminal --tab -e "iperf -c IP -u -p 6001 -b 100M -t 30s"

Save and run it on terminal

So, increased number of UDP one by one to the server like the first experiment

gnome-terminal --tab -e "iperf -c IP -p 5001 -t 60s"
gnome-terminal --tab -e "iperf -c IP -u -p 6001 -b 100M -t 30s"
gnome-terminal --tab -e "iperf -c IP -u -p 6001 -b 100M -t 30s"

And graph below will show our experiment result

TCP and UDP different run time

100
90
80 -
70 -
60 -
50 -
40 -
30 -
20 -
10 -

Throughput

1TCP 1UDP 1TCP 2UDP 1TCP 3UDP 1TCP 4UDP 1TCP 5UDP
TCP 60s and UDPs 30s

HTCP

H UDP1
mUDP2
H UDP3
m UDP4
m UDP5

Figure : Graph that show the result of TCP sessions and UDP sessions sending at same time

starting but different time running

35

Summary

From the graph, bandwidth of TCP is higher than first experiment because UDP client
only run for 30 second but still cause linear decrease in bandwidth for TCP. TCP have high
bandwidth than the previous experiment because after 30 second of UDP client the transfer
has stop and TCP can run in full data rate for another 30 sec remain.

Experiment 4.3 TCP and UDP start with different time.

In this experiment we also do everything same as last two experiment but in this
experiment we want to run TCP sessions and UDP sessions at different starting time. So, we
design this experiment to be like this picture

But we just increase UDP sessions one by one session. So, after we open TCP server and
UDP server like last experiment we will use this shell script file to run

gnome-terminal --tab -e "iperf-c IP -p 5001 -t 60s"
sleep 10s
gnome-terminal --tab -e "iperf-c IP -u-p 6001 -b 100M -t 50s"

save and run it, and also increase UDP sessions one by one

gnome-terminal --tab -e "iperf-c 192.168.1.248 -p 5001 -t 60s"

sleep 10s

gnome-terminal --tab -e "iperf-c 192.168.1.248 -u -p 6001 -b 100M -t 50s"
sleep 20s

gnome-terminal --tab -e "iperf-c 192.168.1.248 -u -p 6001 -b 100M -t 40s"

36

TCP and UDP start different time
120
100
~ 80 -
a mTCP
-
‘g" 60 - = UDP1
N -
F a0 - m UDP2
m UDP3
20 1 = UDP4
0 .
1TCP 1UDP 1TCP 2UDP 1TCP 3UDP 1TCP 4UDP
TCP 60s and UDPs

Figure : Graph that show the result of TCP sessions and UDP sessions sending at different
time

Summary

From the graph show that the throughput of TCP was increase it maybe cause of the
interval that we have to share for UDP was decrease and TCP can send at the full rate on
that interval so that lead to the higher Throughput on TCP

Conclusion

For all of the experiment that our group have perform in “TCP vs UDP sessions” we
can conclude that if we sent TCP sessions and UDP sessions at the same time TCP will share
with UDP for fare it maybe cause of TCP will guarantee the correctness of arriving data but
UDP didn’t guarantee the arriving data just sending packet

APPENDIX

TCP vs UDP

ex1.1

UDP AVG 1st 2nd 3rd 4th
100ms 23.875 21.6 26.9 24 23
200ms 22.575 20.6 21.9 24.1 23.7
300ms 23.275 20.6 24.3 24.3 23.9
400ms 21.2 20.8 22.9 20 21.1
500ms 23.55 24.3 24 22.9 23
600ms 22.575 23.2 23 20.7 23.4
700ms 19.5 20.2 18.7 20.1 19
800ms 17.625 17.6 17.6 17.4 17.9
900ms 15.55 14.7 15.8 15.8 15.9
1000ms 14.125 14 14 14 14.5
1100ms 13.025 12.9 13.1 13 13.1
1200ms 11.975 11.7 12.2 11.8 12.2
1300ms 10.975 10.3 11.2 11.2 11.2
1400ms 10.4775 10.4 10.5 10.71 10.3
1500ms 9.8175 10.1 9.81 9.57 9.79
1600ms 9.32 9.4 9.35 9.13 9.4
1700ms 8.5125 8.41 8.41 8.7 8.53
1800ms 7.845 7.7 8.06 7.7 7.92
1900ms 8.195 8.11 8.25 8.1 8.32
2000ms 7.175 7.01 7.01 7.48 7.2
TCP AVG 1st 2nd 3rd 4th
100ms 12.375 13.4 11.7 12 12.4
200ms 10.3625 13.1 11.1 7.74 9.51
300ms 8.165 9.43 9.29 7.18 6.76
400ms 5.7975 6.67 8.08 2.16 6.28
500ms 4.005 4,97 3.91 2.4 4.74
600ms 2.98 3.91 2.86 1.45 3.7
700ms 2.4975 2.3 2.48 2.2 3.01
800ms 3.335 1.9 2.06 1.88 7.5
900ms 1.5225 1.52 1.54 1.56 1.47
1000ms 1.0365 0.757 0.919 1.24 1.23
1100ms 0.91 0.946 0.907 1.04 0.747
1200ms 0.8805 0.855 0.86 0.949 0.858
1300ms 0.669 0.559 0.712 0.696 0.709
1400ms 0.6595 0.656 0.657 0.663 0.662
1500ms 0.6065 0.609 0.608 0.604 0.605

37

1600ms 0.5475 0.486 0.568 0.569 0.567
1700ms 0.52475 0.526 0.526 0.521 0.526
1800ms 0.4965 0.496 0.497 0.497 0.496
1900ms 0.46975 0.471 0.472 0.465 0.471
2000ms 0.43425 0.435 0.435 0.435 0.432
ex1.2
TCP AVG 1st 2nd 3rd 4th
100ms 10.6675 12.8 9.2 10.8 9.87
200ms 8.35 13.6 6.6 6.74 6.46
300ms 6.0275 12.6 4.18 2.78 4.55
400ms 5.1625 12.6 3.04 2.55 2.46
500ms 4.2275 11.8 2.03 1.1 1.98
600ms 3.805 11.2 1.42 1.25 1.35
700ms 3.5775 10.8 1.08 1.25 1.18
800ms 4.022 13.5 0.919 0.741 0.928
900ms 3.63175 12.2 0.797 0.674 0.856
1000ms 2.64175 8.68 0.569 0.755 0.563
1100ms 1.7615 5.24 0.599 0.602 0.605
1200ms 1.421 4.05 0.606 0.553 0.475
1300ms 0.95875 2.43 0.402 0.563 0.44
1400ms 0.70875 1.64 0.443 0.339 0.413
1500ms 0.6965 1.53 0.436 0.433 0.387
1600ms 0.479025 0.866 0.363 0.3231 0.364
1700ms 0.47075 0.842 0.307 0.35 0.384
1800ms 0.3565 0.62 0.258 0.258 0.29
1900ms 0.35075 0.593 0.22 0.245 0.345
2000ms 0.3465 0.602 0.261 0.262 0.261

38

ubP AVG 1st 2nd 3rd 4th

100ms 21.95 18.9 24.3 20 24.6
200ms 21.85 15.3 23.1 23.3 25.7
300ms 22.525 22.2 24.4 20.7 22.8
400ms 22.05 18.3 24.5 21.1 24.3
500ms 22.8 22.1 22.2 20.5 26.4
600ms 21.8 19.5 21.4 23.2 23.1
700ms 19.975 19.8 20.2 19.7 20.2
800ms 15.925 13.7 17.8 17.7 14.5
900ms 15.5 14.6 15.8 15.8 15.8
1000ms 14.025 14 14 14.1 14
1100ms 12.975 12.7 13 13.1 13.1
1200ms 10.88 9.82 11.4 10.5 11.8
1300ms 10.8025 11.2 9.81 11 11.2
1400ms 9.825 8.3 10.4 10.3 10.3
1500ms 9.24 7.73 9.61 9.81 9.81
1600ms 8.975 9.22 8.49 9.48 8.71
1700ms 8.4825 8.41 8.41 8.61 8.5
1800ms 7.8325 8.07 7.38 8 7.88
1900ms 7.5975 8.81 5.61 7.63 8.34
2000ms 7.0275 7.02 7.04 7.03 7.02

Impact of packet drops on TCP performance

ex 2.1
1st 2nd 3rd 4th 5th

5% 17.5 13.5 19.5 14.2 16.4
10% 3.7 3.06 3.89 2.48 2.91
15% 0.991 1.03 1.36 1.54 1.08
20% 0.584 0.457 0.304 0.678 0.7
25% 0.398 0.269 0.393 0.195 0.266
30% 0.214 0.27 0.316 0.162 0.157
35% 0.18 0.101 0.163 0.0933 0.157
40% 0.0316 0.0803 0.0636 0.0796 0.0684
45% 0.0262 0.0295 0.0766 0.0963 0.0406
46% 0.0326 0.0165 0.0241 0.0381 0.0296
47% 0.0417 0.0535 0.0417 0.0571 0.0364
48% 0.00973 0.0464 0.0344 0.031 0.0361
49% 0.019 0.0348 0.00829 0.0402 0.0454
50% 0.0511 0.0723 0.0338 0.0198 0.0168

39

ex 2.2
1st 2nd 3rd 4th 5th
5% 10.3 11.4 9.95 8.8 7.04
10% 2.54 2.44 2.16 2.77 1.93
15% 1.33 1.14 0.891 0.668 1.33
20% 0.427 0.687 0.521 0.576 0.633
25% 0.34 0.429 0.39 0.374 0.351
30% 0.28 0.272 0.177 0.309 0.265
35% 0.109 0.128 0.122 0.167 | 0.0947
40% 0.0803 0.0758 0.0439 | 0.0688 | 0.0554
45% 0.0332 0.0457 0.0326 | 0.0407 | 0.0495
46% 0.0291 0.065 0.0557 | 0.0152 | 0.0581
47% 0.0727 0.0939 0.0346 0.047 0.045
48% 0.0233 0.0482 0.0551 0.0181 0.0453
49% 0.0409 0.0287 0.0356 | 0.0149 | 0.0399
50% 0.0172 0.038 0.0214 | 0.0154 | 0.0143
ex 2.3
1st 2nd 3rd 4th
5% 15.6 16.8 15.7 15.1
10% 3.07 3.01 2.98 3.04
15% 1.38 1.04 1.07 1.31
20% 0.524 0.573 0.6 0.582
25% 0.313 0.314 0.352 0.365
30% 0.208 0.191 0.233 0.194
35% 0.138 0.128 0.0665 0.168
40% 0.0134 0.0924 0.0753 0.0377
45% 0.0275 0.0386 0.0636 | 0.0512
50% 0.0628 0.0081 0.0408 0.035
51% 0.0159 0.00478 0.0308 | 0.0317
52% 0.0299 0.024 0.0356 0.009
53% 0.0378 0.0284 0.0307 | 0.0197
54% 0.0252 0.0284 0.00663 0.0221
55% 0.0349 0.014 0.00368 | 0.0152
ex 2.4
1st 2nd 3rd 4th
5% 9.68 8.89 9.83 9.14
10% 2.29 2.6 2.33 2.9
15% 0.97 1.22 1.06 0.984

40

20% 0.521 0.526 0.39 0.451
25% 0.286 0.341 0.28 0.329
30% 0.189 0.245 0.21 0.157
35% 0.0865 0.183 0.17 0.125
40% 0.068 0.102 0.0528 | 0.0649
45% 0.0495 0.0235 0.0484 | 0.0422
50% 0.038 0.0188 0.0214 | 0.0213
51% 0.0128 0.0312 0.00594 | 0.00448
52% 0.0223 0.0115 0.0331 | 0.0353
53% 0.0182 0.00795 0.0164 | 0.0171
54% 0.0243 0.0165 0.0133 | 0.00967
55% 0.00586 0.00278 0.0253 | 0.0145

Multiple TCP sessions

41

ex 3.1
First sessions(Mbits/sec) Second sessions(Mbits/sec)
First time 58.1 42.2
Second time 54.6 44.1
Third time 59.1 43.2
Forth time 56.5 43.2
Fifth time 58.6 43.4
First Second Third
sessions(Mbits/sec) | sessions(Mbits/sec) | sessions(Mbits/sec)
First time 54.2 29.8 28.3
Second time 61.2 28.8 27.8
Third time 63.3 30.2 29.8
Forth time 57.8 29.7 28.7
Fifth time 55.2 29.6 28.2
First Second Third Forth

)

sessions(Mbits/sec

sessions(Mbits/sec

)

sessions(Mbits/sec

)

sessions(Mbits/sec

)

First
time

57.6

27.0

20.5

30.3

42

Secon 52.1 28.4 20.1 22.9
dtime
Third 43.7 26.0 18.6 20.6
time
Forth 57.6 25.9 18.9 24.2
time
Fifth 37.6 24.6 22.1 17.5
time
ex 3.2
Throughput(Mbit/s)
First sessions 49.6
Second sessions 45.0
Throughput(Mbit/s)
First sessions 35.1
Second sessions 31.3
Third Sessions 28.2
Throughput(Mbit/s)
First sessions 28.9
Second sessions 24
Third Sessions 25.7
Forth Sessions 16.7
Throughput(Mbit/s)
First sessions 26.7
Second sessions 23.2
Third Sessions 16.6
Forth Sessions 15.4
Fifth Sessions 13.8
Throughput(Mbit/s)
First sessions 25.9
Second sessions 13.5
Third Sessions 18.4
Forth Sessions 9.68

Fifth Sessions

17.1

43

Sixth Sessions 11.2
Throughput(Mbit/s)

First sessions 21.4

Second sessions 15.1

Third Sessions 11.5

Forth Sessions 11.8

Fifth Sessions 13.4

Sixth Sessions 11

Seven Sessions 11.6
Throughput(Mbit/s)

First sessions 20.6

Second sessions 19.5

Third Sessions 15.3

Forth Sessions 10.3

Fifth Sessions 9.46

Sixth Sessions 9.63

Seventh Sessions 6.38

Eighth Sessions 5.95
Throughput(Mbit/s)

First sessions 25.2

Second sessions 13.3

Third Sessions 8.02

Forth Sessions 8.69

Fifth Sessions 9.35

Sixth Sessions 9.54

Seventh Sessions 11.4

Eighth Sessions 5.63

Ninth Sessions 5.98
Throughput(Mbit/s)

First sessions 21.1

Second sessions 18.1

Third Sessions 7.9

Forth Sessions 7.8

Fifth Sessions 8.72

Sixth Sessions 4.49

Seventh Sessions 10.9

Eighth Sessions 4.43

Ninth Sessions 6.02

44

Tenth Sessions 8.33
Throughput(Mbit/s)
First sessions 25.9
Second sessions 12.0
Third Sessions 10.7
Forth Sessions 5.62
Fifth Sessions 4.55
Sixth Sessions 4.44
Seventh Sessions 6.59
Eighth Sessions 7.22
Ninth Sessions 5.63
Tenth Sessions 9.43
Eleventh Sessions 5.86
Throughput(Mbit/s)
First sessions 24.7
Second sessions 8.26
Third Sessions 15.7
Forth Sessions 10.7
Fifth Sessions 3.15
Sixth Sessions 5.92
Seventh Sessions 4.22
Eighth Sessions 6.56
Ninth Sessions 3.26
Tenth Sessions 7.54
Eleventh Sessions 3.23
Twelfth Sessions 5.68
Throughput(Mbit/s)
First sessions 11.9
Second sessions 15.9
Third Sessions 7.96
Forth Sessions 5.4
Fifth Sessions 9.25
Sixth Sessions 5.07
Seventh Sessions 9.65
Eighth Sessions 4.09
Ninth Sessions 3.44
Tenth Sessions 6.65
Eleventh Sessions 9.78
Twelfth Sessions 3.47
Thirteenth Sessions 5.55

45

Throughput(Mbit/s)
First sessions 9.88
Second sessions 17.6
Third Sessions 12.4
Forth Sessions 4.08
Fifth Sessions 3.79
Sixth Sessions 5.55
Seventh Sessions 11.1
Eighth Sessions 5.52
Ninth Sessions 3.49
Tenth Sessions 7.24
Eleventh Sessions 3.48
Twelfth Sessions 5.38
Thirteenth Sessions 5.42
Fourteenth Sessions 4.12

Throughput(Mbit/s)
First sessions 23.4
Second sessions 10.2
Third Sessions 9.06
Forth Sessions 6.87
Fifth Sessions 9.74
Sixth Sessions 5.53
Seventh Sessions 4.89
Eighth Sessions 5
Ninth Sessions 4.99
Tenth Sessions 4.87
Eleventh Sessions 3.27
Twelfth Sessions 3.57
Thirteenth Sessions 4.92
Fourteenth Sessions 2.57
Fifteenth Sessions 3.51

Throughput(Mbit/s)
First sessions 21
Second sessions 10.1
Third Sessions 7.79
Forth Sessions 8.71
Fifth Sessions 3.13
Sixth Sessions 5.15

46

Seventh Sessions 4.47
Eighth Sessions 6.81
Ninth Sessions 2.89
Tenth Sessions 2.97
Eleventh Sessions 5.19
Twelfth Sessions 6.73
Thirteenth Sessions 3.53
Fourteenth Sessions 3.97
Fifteenth Sessions 2.68
Sixteenth Sessions 6.26
Throughput(Mbit/s)
First sessions 3.78
Second sessions 5.57
Third Sessions 9.03
Forth Sessions 457
Fifth Sessions 8.37
Sixth Sessions 8.91
Seventh Sessions 4.12
Eighth Sessions 4.75
Ninth Sessions 3.63
Tenth Sessions 3.26
Eleventh Sessions 11.5
Twelfth Sessions 12.5
Thirteenth Sessions 2.97
Fourteenth Sessions 4.65
Fifteenth Sessions 2.83
Sixteenth Sessions 3.09
Seventeenth Sessions 4.08
Throughput(Mbit/s)
First sessions 21.8
Second sessions 5.81
Third Sessions 5.59
Forth Sessions 4.97
Fifth Sessions 6.26
Sixth Sessions 3.56
Seventh Sessions 7.05
Eighth Sessions 4.35
Ninth Sessions 4.33
Tenth Sessions 4.05
Eleventh Sessions 3.64
Twelfth Sessions 6.67
Thirteenth Sessions 1.7

47

Fourteenth Sessions 3.89
Fifteenth Sessions 4.57
Sixteenth Sessions 5.08
Seventeenth Sessions 2.17
Eighteenth Sessions 6.05
Throughput(Mbit/s)

First sessions 18.9
Second sessions 6.66
Third Sessions 8.32
Forth Sessions 5.52
Fifth Sessions 4.75
Sixth Sessions 3.79
Seventh Sessions 3.59
Eighth Sessions 6.43
Ninth Sessions 4.07
Tenth Sessions 7.32
Eleventh Sessions 4.68
Twelfth Sessions 3.32
Thirteenth Sessions 2.75
Fourteenth Sessions 2.65
Fifteenth Sessions 1.5

Sixteenth Sessions 5.22
Seventeenth Sessions 2.59
Eighteenth Sessions 3.44
Nineteenth Sessions 5.81

Throughput(Mbit/s)

First sessions 10.1
Second sessions 14.5
Third Sessions 4.14
Forth Sessions 3.56
Fifth Sessions 3.06
Sixth Sessions 3.24
Seventh Sessions 3.51
Eighth Sessions 4.88
Ninth Sessions 5.79
Tenth Sessions 5.37
Eleventh Sessions 5.29
Twelfth Sessions 12.2
Thirteenth Sessions 5.31
Fourteenth Sessions 3.19
Fifteenth Sessions 1.93
Sixteenth Sessions 3.51

48

Seventeenth Sessions 2.08

Eighteenth Sessions 2.06

Nineteenth Sessions 2.55

Twentieth Sessions 5.07

ex3.3
Throughput(Mbit/s)

First sessions 55.8

Second sessions 38.5
Throughput(Mbit/s)

First sessions 48.4

Second sessions 31.1

Third Sessions 26.2
Throughput(Mbit/s)

First sessions 48.4

Second sessions 31.1

Third Sessions 20.1

Forth Sessions 25.6
Throughput(Mbit/s)

First sessions 48.4

Second sessions 31.1

Third Sessions 20

Forth Sessions 25.7

Fifth Sessions 94.1

TCP sessions vs UDP sessions

ex4.1
TCP UDP1 UDP2 UDP3 UDP4 UDP5
1TCP
1UDP 84.5 10
1TCP
2UDP 74.9 10 9.9
1TCP
3UDP 65.6 10 9.91 9.81
1TCP
4UDP 56.5 10 9.86 9.76 0.64
1TCP
5UDP 51.7 9.03 9.08 8.85 8.65 8.84
ex 4.2
TCP UDP1 UDP2 UDP3 UDP4 UDP5
1TCP
1UDP 89.2 9.99
1TCP
2UDP 84.3 9.98 9.95
1TCP
3UDP 79.4 9.98 9.94 9.91
1TCP
4UDP 74.5 9.98 9.94 9.9 9.88
1TCP
5UDP 72.3 8.66 8.85 8.74 8.98 8.87
ex4.3
TCP UDP1 UDP2 UDP3 UDP4
1TCP
1UDP 85.7 10.5
1TCP
2UDP 81.6 9.85 20.9
1TCP
3UDP 81.7 9.8 13 29.9
1TCP
4UDP 81.7 9.79 13 29.9 95.7

49

