Verification of a Revised WAP Wireless
Transaction Protocol*

Steven Gordon!, Lars Michael Kristensen?**, and Jonathan Billington?

! Institute for Telecommunications Research,
University of South Australia
2 Computer Systems Engineering Centre,
University of South Australia
{Steven .Gordon,Lars.Kristensen,Jonathan. Billington}@unisa .edu.au

Abstract. The Wireless Transaction Protocol (WTP) is part of the
Wireless Application Protocol (WAP) architecture and provides a reli-
able request-response service. The state space method of Coloured Petri
Nets has been used to analyse a revised version of WTP, to gain a high
level of confidence in the correctness of the design. Full state space anal-
ysis allows us to prove properties of the protocol for maximum values of
the retransmission counters used in GSM networks (values are 4). How-
ever, the size of the state space grows rapidly as the maximum counter
values are increased. We apply the sweep-line method to take advantage
of the progress present in the protocol, notably the progression through
major states of the protocol entities, and the increasing nature of the
retransmission counters. The sweep-line method allows us to prove prop-
erties of the protocol for larger counter values, including those used in
Internet Protocol (IP) networks (where the maximum values are 8). As
a result, verification of WTP can be performed for the two most im-
portant networks (GSM and IP), the ones for which the WAP standard
gives recommended maximum values for the retransmission counters.

1 Introduction

Coloured Petri nets (CPNs) [14] have been used extensively to model and analyse
distributed systems [2, 14]. Several factors have contributed to the popularity of
CPNs, including the compact manner in which systems can be modelled, and the
tool support in the form of Design/CPN [7]. The motivation for modelling and
analysing the Wireless Transaction Protocol (WTP) [21] with CPNs is to gain a
high level of confidence in the design of the protocol. This is achieved by following
a protocol engineering methodology [3], of which the main step is to verify that
the protocol specification is a faithful refinement of the service specification. For
WTP, this begins by creating a CPN model of the Transaction Service, from
which the possible set of sequences of service primitives is generated by viewing
the state space as a Finite State Automaton (FSA). This is the Transaction
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Service language. State space analysis of the Transaction Protocol CPN allows
several dynamic properties to be proved (e.g. absence of deadlocks, livelocks).
The events in the protocol state space that do not represent service primitives
are then abstracted out, and the resulting protocol language is compared to
the Transaction Service language. The two must be language equivalent for the
protocol to refine the service. We apply the FSM tool [1] to conduct the language
comparison as there is no support for this in Design/CPN.

This paper has arisen from our research on the verification of WTP [8-10]. An
initial CPN model and analysis results of the Transaction Service were published
in [8]. This model has since been updated to enforce end-to-end behaviour of the
service and allow abort primitives to be submitted after a successful transaction.
Similarly, an initial CPN model of the Transaction Protocol was presented in
[9], with analysis results revealing three errors in the protocol. Improvements
have been made to produce a simpler and clearer model, with the main change
being only one transaction is modelled. Analysis of this improved model identi-
fied further errors, and changes to the WTP Specification [21] are suggested in
[10], leading to a Rewised Tramsaction Protocol. The contribution of this paper
is the verification and analysis of the Revised Transaction Protocol, including
comparison with the Transaction Service. Details of the identified errors and
suggested changes leading to the Revised Transaction Protocol are not the focus
of this paper. The revised protocol and CPN models will be described only to
the level of detail necessary to understand the analysis approach and results.

The state space analysis of the Transaction Protocol presents two practical
challenges: the explosion in the number of states and the need to perform the
analysis for different parameters. For the latter problem, our objectives are to
prove the desired properties of the protocol for practical values of parameters,
two of which are the recommended values of parameters in GSM networks and
in networks using the Internet Protocol (IP). Several methods have been devel-
oped for alleviating the state explosion problem in CPNs, e.g. symmetries [14],
equivalence classes [14], and stubborn sets [18,19] and used in various applica-
tions (e.g. [15,16]). In this paper we apply the recently developed sweep-line
method [5,6] in the verification of WTP [21]. The sweep-line method exploits
the progress present in a system to explore the full state space while storing
only small fragments of the state space in memory at a time. As demonstrated
by some initial case studies [6] this can lead to a significant reduction in peak
memory usage. The sweep-line method is used for the values of the parameters
of WTP, where full state spaces (state spaces in their most basic form) could not
be generated with the available computing power. This paper describes how the
sweep-line method is used, and discusses the relevance of the results for WTP,
and for protocols in general.

The sweep-line method is related to the bit-state hashing [11] and state space
caching [13] methods. For our verification purposes we consider the sweep-line
method to be the most appropriate reduction method. The reason is that the bit-
state hashing method does not guarantee full coverage of the state space which
means that it cannot (in general) be used to obtain the full protocol language.



The state-space caching method does explore the full state space which means
that the protocol language could be obtained. However, the state space caching
method may visit a state several times which means that the FSA to be input
into the FSM tool would be unnecessarily large.

The remainder of this paper is organised as follows: Section 2 provides back-
ground information on WAP, while Sect. 3 introduces the protocol design con-
cepts central to the verification task. The Transaction Service and Protocol are
described in Sect. 4 and 5, respectively. The full state space analysis of the pro-
tocol is presented in Sect. 6, along with the desired properties. Sections 7 to 10
present the application of the sweep-line method to the verification of WTP.
Section 11 concludes with a summary and areas of future work.

2 Wireless Application Protocol

The Wireless Application Protocol (WAP) [20] is an architecture proposed by
the WAP Forum [20] to overcome the difficulties of providing Internet services
in wireless networks. The existing Internet protocols have been designed as a
method for communicating across different physical, wired networks. However,
several design assumptions no longer hold for wireless networks because of two
main differences: wireless networks typically have higher error rates, lower band-
width, and more frequent disconnections than their wired counterparts; and the
devices typically used in wireless, mobile networks (e.g. mobile phones, PDAs)
have smaller displays, shorter battery life, less powerful CPUs and alternative
input devices than devices commonly used in wired networks (e.g. PCs). The
objectives of the WAP architecture design are to take advantage of the exist-
ing knowledge and infrastructure in developing Web applications, while using
protocols optimised to run over wireless links.

WAP is designed in layers as shown (shaded grey) in Fig. 1. There is an
application layer at the top and then four protocol layers. The Application layer
includes specification of a mark-up language suitable for displaying informa-
tion on small screens, an accompanying scripting language, and a framework
for making use of telephony features in the device and network infrastructure.

Application Layer (WAE) ‘ ‘ Other Services and
Applications

Session Layer (WSP) ‘

Security Layer (WTLS) ‘

Transport Layer (WDP) ‘

‘ Transaction Layer (WTP) ‘

Bearers:
GSM  1S-136 CDMA PHS CDPD PDC-P IDEN

Fig. 1. WAP Architecture.



Together, the components form the Wireless Application Environment (WAE).
The Session layer defines the Wireless Session Protocol (WSP) for creating a
connection-less or connection-oriented session between a client and server. A
connection-oriented session includes setup and tear-down, data push, and ses-
sion suspend and resume. The Transaction layer defines the Wireless Transac-
tion Protocol (WTP) which has three classes of service: an unreliable one-way
request from the Initiator to the Responder (Class 0); a reliable one-way request
(Class 1); and a reliable request by the Initiator and a reliable response from the
Responder (Class 2). The Security layer defines the Wireless Transport Layer
Security (WTLS) which provides applications with privacy, data integrity and
authentication. This is an optional layer in the architecture. The Transport layer
defines the Wireless Datagram Protocol (WDP) which provides a datagram ser-
vice. WDP includes mappings to a range of supported bearer services so that the
upper layer can operate independently of these bearers. The bearers supported
include: GSM Short Message Service (SMS) and General Packet Radio Service
(GPRS), CDMA Circuit Switched Data, Cellular Digital Packet Data (CDPD)
and several proprietary protocols.

3 Protocol Design Concepts

Protocol engineering encompasses the design of communication architectures and
protocols using formal methods [4]. We apply a protocol engineering methodol-
ogy [3] to the analysis of WTP, so that a high level of confidence in the correct-
ness of the design can be achieved. The methodology is based on a fundamental
property of communication architectures: functionality is separated into a lay-
ered (or hierarchical) structure. This is illustrated in the WAP architecture of
Fig. 1, where six layers are evident. The Open Systems Interconnection (OSI)
[12] is an example of separation of functionality into layers. Most of the concepts
used in our analysis of WTP are based on OSI [12]. Layering is achieved by
describing two parts: the service the layer provides to the upper layer, and the
protocol used within the layer to provide that service.

The service is described using primitives which convey information between
service users. Service users submit primitives to the service provider and the
provider delivers primitives to the users. The information conveyed by the prim-
itive is given by its name, type and parameters. The four types of primitives are:
request; indication; response and confirm. A complete service definition should
specify all possible sets of primitive sequences that can occur between users. This
is referred to as the service language.

The protocol in a layer describes the mechanisms for communicating between
two (or more) protocol entities (PEs). The PEs communicate by sending protocol
data units (PDUs) via the service provider of the layer below. The protocol
describes: the actions each PE takes upon submission of a primitive by a service
user; events that cause primitives to be delivered to users; and local events within
each PE to ensure the service is provided.

To take advantage of the separation of functionality into layers, the proto-
col specification must provide the service described in the service specification.



Proving this is true is known as verification and is the major focus of our anal-
ysis of WTP. Using CPNs, the state spaces of the service CPN and protocol
CPN represent the possible sequences of events that can occur in the service
and protocol, respectively. By treating both state spaces as FSA, and removing
all events that do not correspond to primitives occurring, we can compare the
two corresponding languages to determine if the protocol preserves the sequences
of primitives defined in the service.

4 Transaction Service Specification

Our modelling and verification of WTP focuses on the Class 2 service provided
by the Transaction layer which is: a reliable request from the Initiator and a
reliable response from the Responder. The Class 2 Transaction Service defines
the possible service primitives that can be submitted by or delivered to a user.
There are three types of service primitives:

1. TR-Invoke: Initiates a new transaction. The types request (req), indication
(ind), response (res) and confirm (cnf) are allowed.

2. TR-Result: Sends back a result of a previously initiated transaction. The req,
ind, res and cnf types are allowed.

3. TR-Abort: Aborts an existing transaction. Only req and ind types are allowed.

The WTP Specification [21] describes the parameters for these primitives and
gives a table that indicates when one primitive can follow another primitive. We
explain the general concepts of a transaction using two sequences of primitives.

Figure 2(a) is a time sequence diagram that shows a possible primitive se-
quence representing a successful transaction. On the left the primitives submitted
by and delivered to the Initiator user are shown. Similarly, the primitives seen by
the Responder user are shown on the right. Dependencies between primitives are
shown by dashed lines in the area representing the Transaction Service provider.

The Initiator user starts a transaction by submitting a TR-Invoke.req primi-
tive. This is the only primitive that starts a transaction. A TR-Invoke.ind primi-
tive is delivered to the Responder user, indicating that a request has been made.
The Responder user then chooses to acknowledge the request, by submitting a
TR-Invoke.res primitive. The acknowledgment, via the TR-Invoke.cnf primitive,
indicates to the Initiator user that the Responder user has received the request.

Once the Responder user processes the request, (once completed) the user
sends the result via the TR-Result.req primitive. The result is delivered to the Ini-
tiator user (TR-Result.ind), which then acknowledges its receipt (TR-Result.res).
Finally receipt of delivery is confirmed (TR-Result.cnf) to the Responder user.
The transaction has now been successfully completed.

There are several other sequences that represent a successful transaction.
One scenario occurs when the Responder user does not explicitly acknowledge
the invocation request (see Fig. 2(b)). Instead, the sending of the TR-Result.req
primitive, implicitly acknowledges that the invocation has been received. This is
a more efficient scenario in terms of messages than that in Fig. 2(a). However,
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Fig. 2. Example service primitive sequences for UserAck On (a) and UserAck Off (b).

the sequence in Fig. 2(a) is allowed because it is required for use by the Wireless
Session Protocol [20]. When it is required, the Initiator user sets a primitive
parameter, UserAck, to On. With UserAck On, the users must acknowledge
with the response primitives (TR-Invoke.res and TR-Result.res). When UserAck
is Off, the response primitives may or may not be submitted.

We have presented two example primitive sequences illustrating successful
transactions. There is also the possibility of transactions being aborted by either
user or the Transaction Service provider. For further details on the Transaction
Service, we refer the reader to [8,10,21].

The Transaction Service presented in the WTP Specification only specifies
the possible primitive sequences from each user’s point of view. There is no in-
formation describing how the two users coordinate with each other (although for
some primitive sequences it is obvious). In both [8] and [10] we have discussed
several shortcomings of the WTP Specification, which includes the absence of
information regarding the global sequences of primitives. A CPN model of the
Transaction Service has been created [10] with the intent of providing an unam-
biguous specification of the primitive sequences, and also to allow the automatic
generation of the global set of sequences. For the full presentation of this model
the reader is referred to [10]. The end result is the generation of two Transaction
Service languages: one with UserAck Off and the other with UserAck On.

When UserAck is Off, there are 182 valid sequences of service primitives,
the shortest sequence consists of two primitives and the longest consists of eight
primitives. Figure 3 shows the FSA representing this language. The FSA was
obtained by converting the Design/CPN state space representation into a text
format used by the FSM tool [1], hide (make invisible) the non-primitive events,
and minimise the FSA. The primitives are abbreviated using the first letter of
the primitive name (I for Invoke, R for Result, and A for Abort) and the primitive
type (req, ind, res, cnf). Primitives seen by the Initiator user are in upper case,
while the Responder user primitives are in lowercase. The initial state of the
FSA is represented by node 0. Acceptance (or halt) states are indicated using
double circles. When UserAck is On, the service language is a subset (with only
130 sequences) of the UserAck Off language. The reason for this is that the use of
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Fig. 3. Transaction Service language with UserAck Off.

the response primitive is optional with UserAck Off. The two languages are used
as the baseline for determining if the protocol refines the Transaction Service.

5 Revised Transaction Protocol Specification

The Transaction Protocol describes the operation of the two protocol entities,
Initiator and Responder, in terms of PDUs that are used and the actions to be
taken when events occur. In Sect. 5.1 we give a brief overview of the important
features of the protocol [21], especially those that impact the analysis results.
Section 5.2 summarises the errors and the changes that lead to the Revised
Transaction Protocol, which is analysed using full state spaces in Sect. 6 and
using the sweep-line method in Sect. 7. Parts of the CPN model of the Revised
Transaction Protocol are presented in Sect. 5.3.



5.1 Overview of Protocol

The Transaction Protocol defines the procedures for the Initiator PE and Re-
sponder PE to communicate in order to provide the Transaction Service. There
are four types of PDUs sent between the PEs:

Invoke: Sent by the Initiator PE to start a transaction.

Result: Sent by the Responder PE to return the result.

Ack: Sent by either PE to acknowledge the Invoke PDU or Result PDU.
Abort: Sent by either PE to abort the transaction.

The PDUs are sent via the Transport Service Provider which in the WAP
architecture is a datagram protocol. It is assumed re-ordering, losses and du-
plication of PDUs can occur in the Transport Service Provider. Each PDU has
a set of parameters. The important parameters (in terms of the analysis re-
sults), along with the general procedure for a successful transaction, will become
apparent from the following example (see Fig. 4).

Figure 4 is a time sequence diagram that shows: the primitives submitted
by and delivered to the users; events that take place at the PEs (which are
represented by the two vertical lines); and the PDUs that are transmitted via
the Transport Service Provider. Time increases from top to bottom. The first
event shown is the Initiator user submitting a TR-Invoke.req primitive to start a
transaction. We assume the UserAck parameter is set to On.

Upon submission of the TR-Invoke.req primitive, the Initiator PE sends an
Invoke PDU via the Transport Service Provider. A common parameter to every
PDU is a transaction identifier (TID). The TID of PDUs in one transaction
are identical. When the Initiator user initiates a new transaction (which can
occur before the previous transaction has been completed) a new TID is given
to the PDUs. The WTP Specification describes how the TID parameter is used
to ensure PEs do not confuse which transaction the PDUs belong to.

Upon receipt of the Invoke PDU, the Responder PE delivers a TR-Invoke.ind
primitive to the Responder user. The Responder user then submits a TR-Invoke.res

Initiator PE Responder PE
TR-Invoke.req Invoke
—_—
TR-Invoke.ind

__TR-Invoke.res

RCR=0
RCR=1
Result _TR-Result.req
TR-Invoke.cnf
TR-Result.ind
]
TR-Result.res
Ack

TR-Result.cnf

Fig. 4. Example sequence of protocol events for successful transaction.



primitive, acknowledging the invocation. Note that the Responder PE does not
immediately send an acknowledgment to the Initiator PE (to reduce the num-
ber of PDUs sent across the wireless link). Instead the Responder PE waits for
the TR-Result.req from the Responder user. However, in the meantime, as the
Initiator PE has not received an acknowledgment of the invocation, it assumes
the Invoke PDU was lost, and therefore re-transmits. The re-transmission oc-
curs after a timer at the Initiator PE expires. The Initiator PE also increments
a counter, called the Retransmission Counter (RCR), which limits the PE to
RCRI,,,x retransmissions, after which the transaction will be aborted.

As the Responder PE has already received an Invoke PDU, it discards the
re-transmitted Invoke PDU. When the Responder user submits the TR-Result.req
primitive, a Result PDU is sent to the Initiator PE. Upon its receipt, the TR-
Invoke.cnf and TR-Result.ind primitives are delivered to the Initiator user (i.e. the
user now has the result). The last step in the transaction is the acknowledgment
of the result. The Initiator user submits the TR-Result.res primitive, the Initiator
PE sends an Ack PDU and upon its receipt a TR-Result.cnf primitive is delivered
to the Responder user. The transaction has now been successfully completed.
Note that the Responder PE also maintains a retransmission counter which
it uses to re-transmit the Result PDU if it has not received an acknowledgment
before a certain timeout period. The number of retransmissions in the Responder
is limited to a number denoted by RCRR -

The example in Fig. 4 has shown the general procedure for a transaction.
There are many other scenarios, due to other features being used such as: multi-
ple transactions can be underway at the same time; transactions can be aborted
either by the users or the service provider; PDUs can be received out of order,
or not received at all; and the UserAck option is set to Off.

The procedures for the Transaction Protocol’s operation are mainly described
in [21] using a set of state tables. There is a table for each state of each PE, and
each entry (row) in the table comprises four items (columns): the event, such as
the submission of a primitive by a user or timeout at the PE; conditions on the
event; actions to be taken; and the next state of the PE. These state tables are
used as the basis of the CPN model of the Transaction Protocol.

5.2 Errors in the Transaction Protocol

The approach to analysing WTP is to model the protocol described in the WTP
Specification [21], compare the language to the Transaction Service language
(and prove other properties, which are discussed in Sect. 6), and incrementally
fix any errors present. In [9] three errors were presented, and fixes proposed.
Since then a number of other errors have been discovered in the Transaction
Protocol [10]. We summarize the two main errors here.

1. The Ack PDU and Result PDU are ambiguous, in that the receiving PE
cannot be certain if the PDU indicates that the peer user has acknowledged
(submitted a response primitive), or only the peer PE has acknowledged (i.e.



the response primitive has not been submitted). Both PDUs require an extra
field to explicitly indicate their meaning,.

2. After a transaction has been completed, the Responder PE may receive a
re-transmitted Invoke PDU or Ack PDU after certain messages have been
lost, and wrongly accept it to be part of a new transaction. The mechanism
for checking the validity of Invoke PDUs must be prevented from taking
place until a set time after a transaction has completed (instead, the Invoke
PDUs are discarded). After that time, the Responder PE will know that any
Invoke PDUs will be for new transactions.

These two errors do not change the general procedure for a transaction as
described in Sect. 5.1. Further details on the errors and proposed solutions can be
found in [10]. This motivated the development of a revised Transaction Protocol
to eliminate these errors. To see if the revised protocol was correct, we revised
the previous CPN model accordingly.

5.3 Revised Protocol Specification CPN

The CPN of the Revised Transaction Protocol comprises four hierarchical levels
(see Fig. 5), starting with a single page (TR_Protocol) giving an overview of the
two PEs and the communication channel. The communication channel is mod-
elled as a place for either direction of communication: InitToResp and RespTolnit.
To limit the size of the state space, a bound has been put on each of the two
places InitToResp and RespTolnit for the number of PDUs that can be in transit
between the Initiator and the Responder. When the bound is larger than 1, re-
ordering of PDUs in the Transport Service Provider is possible. Moreover, PDUs
may be lost in transmission. One limitation of the model is that we currently do
not consider duplication of PDUs. Another is the omission of the segmentation
and re-assembly feature (which is optional in the protocol). The CPN is also
simplified by considering just a single transaction, instead of multiple, concur-
rent transactions. This is justified because using TIDs for PDUs the transactions
are independent, provided that PDUs have a maximum packet lifetime (which
is assumed in the specification).

TR _Protocol#1

v

v
TR Init PE#11 TR Resp PE#12

TR_Init_PE TR_Resp_PE
| NULL#111 N ™ R LISTEN#121
NULL R_USTEN
| RESULT WAIT#112 Kt £ R_TIDOK_WAIT#122
RESULT_WAIT R_TIDOK_WAIT
|_RW_RcvResult Cnf#1121 )N M R_INVOKE RESP_WAIT#123
RevResult_cnf R_INVOKE_RESP_WAIT
| RESULT RESP WAIT#113 K ™ R RESULT WAIT#124
1 RESULT_RESP_WAIT| R_RESULT_WAIT
| WAIT TIMEOUT#114 N > R_RESULT RESP WAIT#125
L WAIT_TIMEOUT R_RESULT_RESP_WAIT

| ABORT#115 Kt

1_ABORT R_ABORT

I

R _ABORT#126

Fig. 5. Revised Transaction Protocol CPN hierarchy page.
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Fig. 6. Revised Transaction Protocol CPN Initiator PE page.

There are two second level pages, TR_Init_PE and TR_Resp_PE, which show
the major states of each PE. Figure 6 shows the Initiator PE page. The two com-
munication places are shown on the right, substitution transitions represent the
procedures that occur in the set of major states, and the place Initiator maintains
state information for the PE. The initial marking of Initiator shows the Initiator
PE is in the I_NULL state and gives the initial values of the state variables (e.g.
RCR=0). The general procedure for the Initiator PE during a single transaction is
to traverse through the states in the following order: | NULL, | RESULT WAIT,
I_RESULT _RESP_WAIT, and | WAIT _TIMEQOUT. When the transaction is com-
pleted, the Initiator PE returns to the I_NULL state with certain of its other
state variables set to special values. The state | ABORT models a Transport Ser-
vice Provider initiated abort. The Responder PE has a similar page, where its
major states are represented by substitution transitions.

Each transition on the TR_Init_PE page (Fig. 6) is decomposed into another
CPN page. These third level pages model the entries in the state tables given
in the WTP Specification. Figure 7 shows the | NULL page for the Initiator PE.
The general approach is to have a transition for every entry in the state tables
given in [21]. Each transition has an input arc from the Initiator place to ensure
it can only be enabled when the Initiator PE is in the correct state and the
state variables meet the conditions of the state table entry. Transitions model
primitives being submitted by the user, primitives being delivered to the user
(the only fourth level page models a special case of this), timeouts, the receipt
of PDUs and the sending of PDUs. The full Transaction Protocol CPN (original
and revised) can be found in [10] for the case when the medium does not lose or
duplicate PDUs.

6 Full State Space Analysis

The verification of the Revised Transaction Protocol using full state spaces in-
volves proving four desired properties (presented in Sect. 6.1), then obtaining
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the protocol primitive language from the state space and comparing it to the
Transaction Service language. As there are several input parameters for the pro-
tocol this process is repeated for a set of parameter values. The state space and
language analysis results are summarised in Sect. 6.2.

6.1 Desired Properties of the Revised Transaction Protocol

We have defined [10] four desired properties of the Revised Transaction Protocol
that should hold to give a high level of confidence in the correctness of the design.
The first, and most important, is the faithful refinement of the Transaction
Service. The state space of the protocol is computed and converted to a textual
representation using Design/CPN [7], which is then used as input to FSM [1]
to obtain the protocol language. The Transaction Protocol language and the
Transaction Service language are then compared using FSM, and they must be
identical for this property to be true. FSM implements standard algorithms for
determinisation and comparison of minimal FSAs to check language equivalence.

The three other properties are: successful termination; absence of livelocks
and absence of unexpected dead transitions. We have specified the expected
dead markings (called terminal markings) as a predicate on the markings, and
for successful termination the state space must only contain these terminal mark-
ings. No deadlocks (i.e. undesired dead markings) can be present. The strongly
connected components (SCC) graph of the Transaction Protocol is used to deter-
mine the absence of livelocks. We define livelocks as terminal strongly connected
components of the SCC graph with more than one node or one or more arcs. For
some sets of parameters several features of the protocol may not be activated.
As a result, transitions modelling these features will be dead. We have identified
such transitions, and for the fourth property to be true, no other transitions can
be dead.

6.2 Analysis Results

There are four parameters used in the Revised Transaction Protocol CPN:
RCRI,,,x, the maximum value of the counter RCR used by the Initiator PE;



RCRR,ax, the maximum value of the RCR used by the Responder PE; and
UserAck, which indicates whether the transaction has UserAck On or Off. Fi-
nally, there is the bound on the places modelling the communication channel.
We will denote this bound by Cehan. Ideally, the properties would be verified
independently of the parameters. However, our goal is to investigate configura-
tions that are likely to be used in practice. The WTP Specification gives several
suggested values for the counter parameters: RCRIyax and RCRRpy,x both 8
for IP (Internet Protocol) networks; and 4 in GSM SMS networks [21]. Here we
will consider the configuration for which RC Rl .y = RCRR a5 assuming that
the Initiator and Responder work across the same network. All results presented
in this paper were obtained on a PIII 1GHz PC with 512 Mb of memory.

Table 1 shows the experimental results obtained for values of the retransmis-
sion counters up to 5 which include those recommended for GSM SMS networks.
The Config column gives the values of the parameters considered written in the
form X — Y where X specifies RCRIax, and Y specifies whether UserAck is
On (indicated by T) or Off (indicated by F). The bound on the communication
channel Cipan was in all cases set to 2 to consider re-ordering of PDUs. The Nodes
and Arcs columns give the number of nodes and arcs in the full state space, re-
spectively. The G-Time column gives the time for generation of the state space
and for checking the properties of absence of deadlocks, absence of livelocks, and
absence of unexpected dead transitions. The generation time is written in the
form h:mm:ss where h is hours, mm is minutes and ss is seconds. The time used
for verification of the three properties was in all cases insignificant compared to
the state space generation time.

The C-Time column gives the time for checking (using FSM) whether the
protocol and the service languages are identical. It is worth observing that the
time used for language comparison was in all cases significantly less than the time
used for state space generation in Design/CPN. In all cases, the deterministic
FSA computed from the state space was smaller than the full state space. This
is the main reason why comparison of the languages is tractable in this case.

For all configurations in Table 1, the protocol and service languages were
equivalent, and the protocol successfully terminated and did not include livelocks
or unexpected dead transitions. The results are only given for RCRI,. and
RCRR,,2x up to 5 because Config 6-F could not be calculated using full state
space analysis on the machine used. Configs 6-T and 7-T could be calculated,
and the properties were proven correct. Therefore, five is the highest value of
the counters for which the protocol can be verified with both UserAck On and
Off.

Table 1. Experimental results for full state space analysis.

Config| Nodes Arcs G-Time C-Time Config| Nodes Arcs G-Time C-Time

1-T 1,838 9,587| 0:00:03 0:00:01 1-F 4,232 32,686| 0:00:10 0:00:01
2-T || 10,333 58,286 0:00:30 0:00:02 2-F || 24,906 149,792| 0:01:52 0:00:03
3-T || 30,978 178,329| 0:02:15 0:00:08 3-F || 74,017 453,010 0:10:43 0:00:39
4-T || 65,873 380,825| 0:07:06 0:00:21 4-F ||154,231 945,127 0:38:15 0:00:46
5-T |(|173,343 654,842 0:16:33 0:00:47 5-F ||262,442 1,605,984| 1:36:38 0:01:43




7 Sweep-Line Analysis

There is an intuitive presence of progress in the Transaction Protocol from the
start of the transaction towards the transaction either being successfully com-
pleted or aborted. This progress is (for instance) explicit in the Initiator PE that
starts in its initial state (I_NULL) and progresses through its intermediate in-
ternal states (I_LRESULT _WAIT, I_RESULT _RESP_WAIT, | WAIT_TIMEOUT) (see
Fig. 6) and eventually ends in the | NULL state with its state variables set to
special values. We will denote the terminating state of the Initiator by |_TERM.
There is a similar presence of progress in the Responder PE. In addition to the
progress in the internal states of the two protocol entities, there is also progress
due to the retransmission counters in the two protocol entities as the values of
these increases as the transaction proceeds.

The progress exhibited by the Transaction Protocol is also reflected in the
state space of the CPN model. Figure 8 shows the initial fragment of the state
space. To simplify the figure we have omitted states in this initial fragment
resulting from user and provider initiated abort. The states have been organised
into four layers based on how far the system has progressed according to the
internal state of the two protocol entities. For example, layer 1 (the top most
layer) contains the states where the Initiator PE is in state |_.NULL and the
Responder PE is in state R_.LISTEN. The initial marking represented by node 1
is the only marking in this layer. Nodes 2-4 constituting layer 2 are the states
where the Initiator PE is in state | RESULT WAIT and the Responder PE is in
R_LISTEN. Hence, the lower the layer, the further the system has progressed.

The key observation to make is that progress in the Transaction Protocol
manifests itself by the property that a marking in a given layer has successor
markings either in the same layer or in some lower layer, but never in an upper
layer. The idea underlying the sweep-line method [6] is to exploit such progress
by deleting markings on-the-fly during state space exploration. The deletion is
done such that the state space exploration will eventually terminate and upon
termination all reachable markings will have been explored exactly once.

I Layer :
1 » 3 4 +Initiator: |_RESULT_WAIT .
M 7_ & ! Responder: R_LISTEN .

RESULT_WAIT
onder: R_TIDOK_WAIT

l 16 l 20|21 |22 ll 23 l lh.?ﬁfo? |_RESULT_WAIT
' Responder: 1'R_INVOKE_RESP

Fig. 8. Initial fragment of the state space for the Revised Transaction Protocol.



To illustrate how the sweep-line method operates, consider Fig. 8 and assume
that it represents a snapshot taken during conventional state space exploration.
Dashed nodes are fully processed markings (i.e. markings that are stored in
memory and all their successor markings have been calculated). Nodes with
a thick solid black border are unprocessed nodes (i.e. nodes that are stored in
memory, but their successor markings have not yet been calculated). Nodes with
a thin solid black border are markings that have not yet been calculated.

If the state space exploration algorithm processes markings according to the
progress of the protocol they correspond to, node 4 will be the marking among
the unprocessed markings that will be selected for processing next. This will
add nodes 14, 15, 20, and 21 to the set of stored markings and mark these as
unprocessed. At this point it can be observed that it is not possible from any
of the unprocessed markings to reach one of the markings 1, 2, 3, and 4. The
reason is that nodes 1, 2, 3, and 4, represent markings where the protocol has
not progressed as far as in any of the unprocessed markings. Hence, it is safe to
delete nodes 1, 2, 3, and 4, as they cannot possibly be needed for comparison
with newly generated markings when checking (during the state space explo-
ration) whether a marking has already been visited. In a similar way, once all
the markings in the third layer have been fully processed these nodes can be
deleted from the set of nodes stored in memory. Intuitively, one can think of a
sweep-line being aligned with the highest layer (seen from the top) that contains
unprocessed markings. During state space exploration, unprocessed markings are
selected for processing in a least-progress first order causing the sweep-line to
move downwards. Markings will thereby be added in front of the sweep-line and
deleted behind the sweep-line.

8 DProgress Measure Specification

The progress exploited by the sweep-line method is formally captured by a
progress measure. In this section we formally specify the progress measure for
the Revised Transaction Protocol based on the intuition presented in Sect. 7.

A progress measure [6] consists of a progress mapping assigning a progress
value to each marking, and a partial order (O, C) on the markings of the system.
A partial order (O,C) consists of a set O and a relation = C O x O which is
reflexive, transitive, and antisymmetric. Moreover, the partial order is required
to preserve the reachability relation of the system. The definition of progress
measure below is identical to Def. 1 in [6] except that we give the definition in
a Petri Net formulation. In the definition, My denotes the initial marking, [My)
denotes the set of markings reachable from the initial marking, and M denotes
the set of all markings. If a marking M; is reachable from a marking M, via
some occurrence sequence we write M; —* M. In particular M —* M for all
markings M € M.

Definition 1. A progress measure is o tuple P = (0,C, ) such that (O,C)
is a partial order and 1y : Ml — O is a progress mapping from markings into O
satisfying: VM, M' € [My) : M =-* M' = (M) E (M'). |



It is worth noting that the definition of progress measure implicitly states that
for all M € [My) : (M) C (M), i.e., the initial marking is minimal among
the reachable markings with respect to the progress measure. The requirement
that the progress measure preserves the reachability relation can be verified fully
automatically during the sweep-line state space exploration since each arc of the
state space is explored. From Def. 1 it follows that the sweep-line method can
handle state space containing cycles, but all states on the cycle are required to
have the same progress measure.

For specifying Transaction Protocol progress measure, we introduce some
notation: For a reachable marking M, RCRI(M) denotes the value of the Ini-
tiator PEs retransmission counter in M, RCRR(M) denotes the value of the
Responder PEs retransmission counter in M, Is(M) denotes the Initiator PE’s
internal state in M, and Rs(M) denotes the Responder PE’s internal state in
M. To capture the progress from the internal states, we define a mapping g
that enumerates the Initiator PE’s states according to the progress it represents.

0if Is(M) = I_NULL

1if Is(M) = I_.RESULT WAIT
(M) = { 2if Is(M) = |_RESULT_RESP_WAIT

3if Is(M) = | WAIT_TIMEOUT

4if Is(M) = |_.TERM

A similar mapping (denoted ¥rg) is defined enumerating the Responder PE’s
internal state according to progress. We have not assigned any value to | ABORT
(see Fig. 6) since it only represents the event of an abort and not an actual state
of the Initiator PE.

We define two mappings ¥rorr and ¥rorg to capture progress in terms of the
retransmission counters in the Initiator PE and the Responder PE, respectively.
The definitions are: ¥ror1 (M) = RCRI(M) and ¢rerr (M) = RCRR(M).

In addition to the progress due to retransmission counters and internal states
of the protocol entities, we will also exploit that when both protocol entities have
terminated, the sum of the number of tokens on the two places InitToResp and
RespTolnit is decreasing (see Fig. 6). The mapping ©¥cuay, capturing progress
in terms of the decreasing number of tokens on the communication channel, is
defined below. For a place p and a marking M, we denote by M (p) the marking
of pin M, and by | M (p)| the number of tokens on p in M.

Youan(M) = 2 % Cepan — (| M (InitToResp)| + | M (RespTolnit)|)

Having identified the sources of progress, we can now define the full progress
mapping Ywrp for the Transaction Protocol as a 5-dimensional vector:

(Y1s(M), ¥rs (M), Yror1(M ), YroRR (M), Youan(M))
Y if Is(M) = |_.TERM
Ywre(M) = A Rs(M) = R.TERM
(Y1s(M),¥rs (M), Yror1(M), YroRR (M), 0) otherwise



For the definition of the partial order Cwtp between the progress values, we
view the progress values as progress vectors in Z3 and consider one progress vec-
tor Ywrp(M;) = (a1, a2, as,a4,a5) to be less than or equal to a progress vector
Ywre(Ms) = (b1, ba, bs, bs, b3) if and only if it is possible to obtain wre(M2)
from Ywrp(M;) by increasing the progress values (coordinates) in Ywrp (M7).
Formally the ordering is defined as: ¥wrtp(M1) Cwrp Ywrp(M2) if and only if
a; < b;foralll < i < 5. It is straightforward to see that Cwrp is a partial
order. That the tuple (¥wtp, (EwTp,Z5%)) is indeed a progress measure, i.e., also
preserves the reachability relation according to Def. 1, is checked fully automati-
cally by the Design/CPN sweep-line library [6] that we apply for the state space
exploration.

9 Implementing the Progress Measure

In this section we show how the progress measure Ywrp in the previous section
can be implemented and provided as input to the sweep-line library [6]. The
sweep-line library is implemented on top of Design/CPN [7], and the STANDARD
ML (SML) [17] programming language is available to the user for specifying
progress measures. The user provides a progress measure to the tool by writ-
ing an SML function mapping a marking into an integer. SML support for un-
bounded integers (integers which cannot overflow) is exploited as the co-domain
for progress mappings. The ordering on progress values is the usual total ordering
on integers.

The first step when implementing wp is to overcome the limitation that the
sweep-line library currently only supports progress measures where the progress
values are integers and the ordering is the total ordering on integers. The progress
values for Ywrp are vectors, and the ordering Cwrp is a partial order. Hence
we need to define a (preferably injective) mapping from Z® to Z and embed the
partial order Cwrp into the total ordering (<) on integers. A simple way to do
this is to interpret the vector Ywrp (M) = (a1, a2, as,a4,a5) as a number in base
n, where n is larger than any value that can be assumed by the components.
Hence, we can set n = max(2%Cgpan, 4, RCRInax, RCRRmax)+ 1. The embedded

progress measure ¥wtp can be defined as:

Pwre (M) = this(M) % n® + thrs(M) x n' + Prori(M) *n® +
Yrerr (M) * n® + Youan(M) x nt

Another possibility would be to define the embedded progress values as the
Euclidean distance from (0,0,0,0,0) to the point ¢Ywrp(M). Also, the weight
given to the different components can be set differently. In the rest of this paper
we used the embedding specified above. It is left as future work to compare
the alternatives. The embedded progress measure can be implemented in 20
lines of SML code and input into the sweep-line library. It should be noted that
by embedding the progress measure into the set of integers (i.e. making it 1-
dimensional) we “lose” some of the progress in the system compared to being
able to handle the 5-dimensional progress measure directly.



10 Sweep-Line Experimental Results

The sweep-line method supports on-the-fly verification of safety and reachabil-
ity properties. Checking for dead markings and identifying dead transitions is
straightforward with the sweep-line method since all nodes and arcs of the state
space are visited. The sweep-line library has direct support for checking that all
dead markings satisfy a certain marking predicate, and for identifying the dead
transitions. Hence, checking for absence of deadlocks and that only the desired
transitions are dead is fully supported by the sweep-line library. The absence of
livelocks can also be checked with the sweep-line method, but is currently not
supported by the sweep-line library. Hence, for the configurations of WTP where
verification has been done using the sweep-line method, we have not been able to
check the absence of livelock property. To compare the protocol and the service
languages, we write the FSA corresponding to the state space into a file during
the state space exploration. This file can then be used as input to the FSM tool.
This means that the full state space is represented in the FSM tool, but it still
saves memory in practice since the information related to a node and an arc is
reduced to an integer, whereas in the current implementation of the state space
method in Design/CPN, a state takes up more space than an integer.

Table 2 shows the experimental results obtained with the sweep-line method
for different configurations of WTP with values for RCRI,,x = RCRRp,,x up to
8, and Ccpan = 2. The Full State Space column lists (for comparison) the number
of nodes in the full state space and the time for full state space generation
when possible. A “-” is an entry that indicates that the corresponding number
could not be obtained. The Sweep-Line Method columns list the peak number of
markings stored with the sweep-line method. The number in parentheses after
the peak number of markings gives (in percentage) the peak number of markings
divided by the number of markings in the state space. The GC-Time column gives
the time used by the sweep-line method for garbage collection of states and the E-
Time column gives the total time for the exploration of the state space, including
the time spent in writing the FSA into a file. The Threshold column gives the
garbage collection threshold used for the state space exploration. The sweep-
line library uses a simple algorithm for initiating garbage collection during the
sweep: whenever n new markings have been added to the state space, garbage
collection is initiated. The C-Time column lists the time used by the FSM tool
to compare the protocol and the service languages. It can be seen that the
use of the sweep-line method reduces the peak number of nodes stored during
state space exploration ranging from around 44 % to 21 %. Also, the total
calculation time using the sweep-line method is significantly shorter than using
the full state space analysis due to the fewer number of markings that a new
marking is compared against. All comparisons revealed that the protocol and
services languages were equivalent. It is also interesting to observe that as the
configurations are approaching counter values of 8, the language comparison
starts to become the bottleneck rather than the generation of the state space.



Table 2. Experimental results for sweep-line analysis.

5-F|(|262,442 1:36:38| 63,627 (24.2 0:04:00 0:18:48 12000| 0:01:46

Config||Full State Spaces Sweep-Line Method

Nodes Time | Peak Nodes GC-Time E-Time Threshold|C-Time
1-T|| 1,838 0:00:03 762 (41.4)  0:00:01 0:00:04 250| 0:00:01
2-T|| 10,333 0:00:30| 3,873 (37.5) 0:00:02 0:00:26 1500( 0:00:01
3-T| 30,978 0:02:15| 9,982 (32.2) 0:00:10 0:01:29 3000 0:00:08
4-T|| 65,873 0:07:06| 17,543 (26.6) 0:00:09 0:01:35 4500( 0:00:20
5-T||113,343 0:16:33| 27,737 (24.5)  0:00:59 0:06:04 6000( 0:00:46
6-T(|172,657 0:32:45| 39,552 (22.9) 0:01:56 0:09:50 7500 0:01:29
7-T|/243,765 1:07:52| 53,985 (22.1)  0:02:56 0:14:21 10000 0:02:31
8-T(326,667 -| 70,037 (21.4)  0:04:25 0:20:13 12500 0:06:00
1-F|| 4,232 0:00:10] 1,857 (43.9) 0:00:01 0:00:11 500 0:00:01
2-F|| 24,905 0:01:52| 9,099 (36.5) 0:00:08 0:01:17 3000( 0:00:04
3-F|| 74,017 0:10:43| 23,445 (31.7)  0:00:38 0:04:21 6000| 0:00:16
4-F||1564,231 0:38:15| 41,145 (26.7)  0:01:48 0:09:54 9000( 0:00:47

)

)

)

)

6-F||397,583 -| 89,970 (22.6 0:07:15 0:29:52 15000| 0:04:36
7-F|(659,604 -|1121,333 (21.7)  0:10:26 0:43:04 20000 0:16:16
8-F||748,505 -|1160,091 (21.4)  0:14:40 0:59:09 25000 2:36:07

11 Conclusions

We have applied the state space method for Coloured Petri Nets and language
comparison techniques as implemented in the FSM tool for the verification of
WTP focusing on checking that the revised version of WTP conforms to the
service specification. Full state spaces were used to verify WTP for smaller con-
figurations and the sweep-line method was applied to obtain the state spaces for
the larger configurations. We have now verified WTP for the two configurations
recommended in the WTP Specification, giving us a high level of confidence in
the correctness of the design. This illustrates the applicability of formal methods
to identify and fix errors in communication protocols, and prove properties for
non-trivial and practically relevant scenarios. The use of the sweep-line method
made it possible to reduce peak memory consumption of Design/CPN to about
20 % of the full state space. This allowed us to obtain the state spaces for the
configurations of interest. We have shown how control flow and retransmission
counters in protocols constitute a source of progress that can be exploited to ob-
tain a progress measure for the sweep-line method. This technique is applicable
in general for verification of protocols using the sweep-line method.

A disadvantage of our current approach is that the comparison between the
service and the protocol language is not done on-the-fly during the state space
exploration. We have to write the FSA corresponding to the protocol language
into a file such that it could be compared with the service language using FSM.
Future work will investigate whether a method exists for the protocol language
to be compared with the service language during the state space exploration
with the sweep-line method.
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