
An Approach to Generalising the State Space of a
Distributed Missile Simulator

Steven Gordon, Lars Kristensen and Jonathan Billington
Computer Systems Engineering Centre

School of Electrical and Information Engineering
University of South Australia

Mawson Lakes SA 5095 Australia

Abstract. Formal methods can be used to verify
refinements made in the design stages of systems. For
example, the state space of a detailed design model
can be compared with that of an abstract design
model to see if it preserves sequences of events.
Problems with state space analysis (state explosion,
fixed initial states) make this difficult for real
applications. In this paper we outline an approach for
obtaining a generalised state space of a distributed
missile simulator. The original state space has a
repetitive structure. Our aim is to prove that for any
initial state, the system will eventually halt, after
which we can define a compact graphical
representation of the state space, that is independent
of the initial state.

INTRODUCTION

Background. Developing accurate requirements and
design specifications is an important part of the
systems engineering process. If errors are found in
these specifications after the implementation phase,
costly overruns in time and budget can occur.
Modelling and analysis with formal methods can play
a role in reducing errors by producing unambiguous
specifications and also providing a means for proving
properties of the system design. One property we are
often interested in is whether a specification at one
level of detail (e.g. an abstract design) is a faithful
refinement of one at a higher level (e.g.
requirements). State space analysis techniques (i.e.
essentially exploring all possible states) can be used
for proving such refinements (Valmari 1998).
However, state space analysis is limited by the state
explosion problem (too many states to reasonable
calculate for complex systems) and the fact that a
state space must be generated for each different initial
state of the system. Reduction techniques may be
used to alleviate these problems in some cases.

In this paper we discuss ideas for generalising a state
space of a real application, a distributed missile
simulator called Integrated Weapons Simulator (IWS)
(Collas 1997). Two existing methods do not seem to
work for our application. We present a new approach
that combines induction, data-independence and
parameterization. The state space of the detailed
design model is repetitive. This leads us to analyse
the structure of a single component and then
inductively reason about the complete state space.

From this we can obtain a general state space, with
extra annotations, that represents any number of
repetitive components, and hence a range of different
initial states.

The following provides background information on
the missile simulator and then we outline the contents
of the remainder of the paper.

Missile Simulator. IWS is a distributed air-to-air
missile simulator with a graphical user interface
(GUI). It was developed for, and in collaboration with
DSTO, the research arm of Australia’s Department of
Defence. The aim of IWS is to provide an
environment for DSTO to test various algorithms for
the guidance and control of air-to-air missiles.
Accurate simulations may require the complexity of
these algorithms to be large. Therefore, in designing
IWS, several important features were desired so that
the system performs adequately: modularity,
concurrent execution and remote execution of
separate components of the simulation. To provide
modularity, IWS is divided into five components:

1. GUI: accept inputs from, and presents the results
of the simulation to, the user.

2. Target: model the target for the simulation.

3. Radar: simulate the physical radar sensor on the
missile.

4. Infrared: simulate the physical infrared sensor on
the missile.

5. Missile Control: fusion of data from missile
sensors, and guide and control the missile.

The four simulation components (Target, Radar,
Infrared and Missile Control) can be executed
remotely, and where possible, concurrently. In
providing these features it is necessary to verify that
communication between the components in IWS is
correct. Coloured Petri nets (Jensen 1997) (CPNs) are
used to model and analyse the communication in
IWS.

Contents. The following Section describes the
methodology that has been used for modelling and
analysing IWS. A brief overview of CPNs is also
given. Then we present the state space of the IWS
detailed design model. Two existing ideas for
generalising the state space, equivalence classes and

parameterized state spaces, are then given, and their
pitfalls for our application discussed. Following this
we present an outline of our new approach. We aim
to prove the detailed design model eventually halts,
and then we can graphically represent any
configuration in a single general state space. We
conclude this paper with a summary and future work.

It should be noted that, due to space limitations, we
do not go into many more details about IWS and the
CPN models. The reader interested in a detailed
description of IWS is referred to (Gordon 1998).

MODELLING & ANALYSIS APPROACH

Coloured Petri Nets. CPN (Jensen 1997) is a formal
method suited to expressing concurrency, non-
determinism and system concepts at different levels
of abstraction. They are a class of high-level nets that
extend the features of basic Petri nets. We illustrate
the important concepts of CPNs by using the
requirements model of IWS, shown in Figure 1. The
net consists of two types of nodes, places (ellipses,
e.g. GUIState, Inputs and Outputs) and transitions
(rectangles, e.g. Start, UpdateGUI, etc.), and directional
arcs between nodes. An input arc goes from a place to
a transition and an output arc vice versa. Places are
typed by a colour set. For example, place GUIState has
the colour set State. The declarations for Figure 1 are:

color State = with Start | Update | Compare | Halt;

color Inputs = with Delta;

color Outputs = with TargetPos | MissilePos | RadarRange |
InfraredRange;

GUIState

State
1‘Start

OutputsOutputsInputs Inputs

Start HaltUpdateGUI

Simulate

Simulation

Graphical User Interface

Miss

Start

1‘TargetPos+
1‘MissilePos

Delta

Delta

1‘TargetPos+
1‘MissilePos+
1‘RadarRange+
1‘InfraredRange

1‘RadarRange+
1‘InfraredRange

1‘TargetPos+
1‘MissilePosDelta

Update

Update
Compare

Compare

Update

Halt

Compare

Figure 1: IWS Requirements Model

Places may be marked by a value from the colour set.
These are known as tokens. For example, place
GUIState is initially marked with one Start token,
denoted by 1‘Start above the place. A collection of
tokens on a place is called it’s marking, and the
marking of the CPN comprises the markings of all
places. Transitions and arcs also have inscriptions,
which are expressions that, along with the tokens in
places, determine whether a transition is enabled. A

transition is enabled in a marking if sufficient tokens
exist in each of its input places (as determined by the
input arc inscriptions), and the transition guard (given
in square brackets) evaluates to true.

In Figure 1, transition Start is enabled because Start is
in the only input place and it is also the arc
inscription, and there is no guard for the transition
(which implies the guard is always true). A subset of
the enabled transitions can occur. The occurrence of a
transition destroys the necessary tokens in the input
places and creates new tokens in the output places, as
given by the expressions on the arcs. The occurrence
of transition Start replaces the token Start with the
token Update in place GUIState and creates a Delta

token in place Inputs. When variables are used in arc
inscriptions or guards, the values they are bound to on
occurrence of a transition, together with the transition
name, determine a binding element.

The CPNs of IWS were edited, simulated and partly
analysed using Design/CPN. Design/CPN may be
used to interactively or automatically simulate the
net, and to create the state space. The state space is a
directed graph with nodes and arcs representing the
net markings and binding elements, respectively (e.g.
Figure 2(a)). A complete state space represents all
possible states the CPN can reach. In Design/CPN
queries can be made on the state space to determine
dynamic properties of the CPN (e.g. deadlocks, live-
locks, bounds on places). The state space can also be
viewed as a finite state automaton (FSA) which, with
appropriate analysis techniques can be used to give
the language accepted by the CPN, where the binding
elements are the alphabet (e.g. Figure 2(b)).
Language comparison of different models is used to
prove the faithful refinement, in terms of sequences
of certain events, of the models.

1
0:1

1
GUIState: 1‘Start
Outputs: empty
Inputs: empty

2
2:1

2
GUIState: 1‘Update
Outputs: empty
Inputs: 1‘Delta

3
1:1

3
GUIState: 1‘Update
Outputs:
 1‘TargetPos +
 1‘MissilePos +
 1‘RadarRange +
 1‘InfraredRange
Inputs: empty

4
1:2

4
GUIState: 1‘Compare
Outputs:
 1‘TargetPos +
 1‘MissilePos
Inputs: empty

5
1:0

5
GUIState: 1‘Halt
Outputs: empty
Inputs: empty

1:1->2
Start

2:2->3
Simulate

3:3->4
UpdateGUI

4:4->5
Halt

5:4->2
Miss

1

2

3
Miss

4

Start

UpdateGUI

Halt

 (a) (b)

Figure 2: Requirements (a) State Space &
(b) FSA

Methodology. IWS has been modelled and analysed
at three levels of abstraction: requirements, abstract
design and detailed design. A top-down methodology,

as seen in Figure 3, has been followed.

Model

Requirements
Informal

Abstract Design

Requirements

Implementation

Model

Model

DFSAOE-GraphSim Plots

O-Graph

O-Graph DFSA

DFSA

Detailed Design

Figure 3: Modelling & Analysis
Methodology

The requirements shows the sequence of events that
define the interactions between the GUI and the
simulator. The events are given by the key transitions
Start, UpdateGUI, Miss and Halt. The deterministic FSA
(DFSA) of the requirements model (Figure 2(b)) is
used when determining whether the design models
satisfy the requirements. That is, for the abstract
design to be a faithful refinement of the requirements,
their DFSAs must be the same.

The CPN of the abstract design models the message
flow between the GUI and simulator and, more
importantly, within the simulator. The model consists
of a top-level page which models the GUI-simulator
interactions and the communication between
simulator components, and sub-pages describing the
message flow within each of the four simulator
components. The basic flow of data (see Figure 4 for
the state space) is as follows: the target trajectory is
updated based on the target model (starting at node
2); radar and infrared ranges are updated based on the
target and missile trajectories; and the missile
trajctory is updated based on the estimated ranges and
current missile trajectory. This flow is one iteration.
At the end (i.e. node 31) a test is made if a hit occurs
(i.e. the missile collides with the target) or the user
manually stops the simulator. If so, the simulator is
halted (node 32), otherwise a miss occurs and another
iteration begins (node 2).

It should be noted that the abstract design uses
constant values to represent the data in the simualtor
(e.g. target and missile trajectories, radar and infrared
ranges). The next model, the detailed design (Figure
5), has the same CPN structure as the abstract design,
but introduces actual data values such as the x,y,z
coordinates and fucntions to manipulate them.
Therefore, as well as modelling the flow of data, the
detailed design also models the calculations
performed within the simulator. For more details on
the modelling and analysis see (Gordon 1998). Table
1 summarizes the information included in each of the
models. One aim of the analysis is to ensure each

model is a faithful refinement of its predecessor.
1
0:1

2
2:1

3
1:1

4
1:1

5
1:2

6
1:2

7
1:2

9
2:2

10
1:2

8
1:2

13
2:2

14
1:1

12
2:2

11
1:1

17
2:1

16
2:3

15
2:1

20
2:2

19
1:3

18
2:2

24
2:2

22
2:2

23
1:2

21
2:2

28
2:1

26
3:2

27
1:1

25
2:1

29
3:1

30
2:1

31
2:2

32
1:0

1:1->2
IWS’Start

2:2->3
Target’GetGUIInputs

3:3->4
Target’CalcTarget

4:4->5
Target’UpdateTAGUI

6:5->7
Radar’GetRFInputs

10:7->10
Radar’CalcRFRange

16:10->14
Radar’UpdateRFGUI

22:14->17
Infrared’GetIRInput

27:17->20
Infrared’CalcIRRang

34:20->22
Infrared’UpdateIRGU

38:22->26
Missile’CalcMissile

45:26->29
Missile’UpdateMCGUI

48:29->31
IWS’UpdateGUI

50:31->2
IWS’Miss

51:31->32
IWS’Halt

Figure 4: Abstract Design State Space

GUIInputs

Vel

TargetToGUI

Pos

TargetToRF

Trajectory

MCToGUI

Pos

TargetToIR

Trajectory

MCToIR

Trajectory
1‘InitMissile

MCToRF

Trajectory
1‘InitMissile

RFToMC

Range

IRToMC

Range

Miss
[Miss(tp,mp)]

HS

Radar
HS

Infrared

HS
MissileControl

HS

Target

GUIState

State
1‘Start

Start

RFRange

Range

IRRange

Range

UpdateGUI
C

Graphical User Interface

Simulation

Halt

(tp,tv)

t_trajt_traj

(tp,tv)

CalcRFRange
 (t_traj,m_traj)

CalcIRRange
 (t_traj,m_traj)

ir_rngrf_rng
(mp,mv)

m_traj

(mp,mv)

m_traj

mp

tp
delta

Update

Start

GetDelta()

rf_rng

ir_rngrf_rng

Update

Compare CompareUpdate

GetDelta() mp

tp

Halt

mp

tp

Compare

ir_rng

Figure 5: Detailed Design CPN Model

Model GUI to
Simulator

Simulator
Data Flow

Simulator
Calculations

Requirements *

Abstract Design * *

Detailed Design * * *

Table 1: Summary of Modelled Features

STATE SPACE ANALYSIS OF IWS

Ordinary State Space. The state space of the
detailed design model depends on the initial
parameters used in the model. These parameters
include the initial missile and target positions, the
maximum missile and target speeds and the tolerance
for a hit to occur (i.e. the distance between the target
and missile to be classified as a hit). When the target
is initially further away from the missile, then the
simulator will take more iterations before a hit occurs
than if the target was closer. Table 2 shows some
state space results for different configurations.

Parameter Values State Space Results

Tol. Target Pos. Target Vel. Nodes Arcs TS

0.01 (0.025,0,0) (103,0,0) 94 150 3

0.01 (1,0,0) (103, 103, 103) 7410 11950 239

0.005 (1,0,0) (103, 103, 103) 14509 23400 468

0.01 (1,0,0) (103,0,0) 5457 8800 176

Table 2: Detailed Design State Space
Results. Tol = tolerance, TS = terminal states,

Units: km and hours.

(Gordon 1998) give an interpretation of the results in
Table 2. For simplicity and brevity, we will use the
state space from the first row of Table 2, shown in
Figure 6, to explain the dynamics of the detailed
design model.

 1st Iteration 2nd Iteration 3rd Iteration

1

2

3

4

5

6 7

9 108

13 141211

171615

201918

2422 2321

2826 2725

29 30

31

32

33

34

35

36

37 38

40 4139

44 454342

46 47 48

49 50 51

52 53 54 55

56 5957 58

60 61

62

63

64

65

66

67

68 69

71 7270

75 767473

797877

828180

83 84 85 86

87 9088 89

9291

93

94

Figure 6: Detailed Design State Space

We have presented Figure 6 so we can see the
correspondence of the state space to the iterations in
the simulator. For the initial three iterations occur
before the missile hits the target. After IWS is started

(the Start transition occurs) a simulation iteration
begins. We can classify the nodes 2 through to 31 as
performing the calculations in the simulator. At node
31, a user stop can occur, leading to a terminal state,
node 33. Alternatively, the Miss transition can occur
as the target and missile positions are not close
enough to classify as a hit. This leads to node 32
which begins a second iteration. Again, the
calculations are performed (nodes 32 to 62) and either
a user stop or miss can occur. Similarly, the third
iteration occurs until we get to node 93. At this point
the missile and target positions are close enough to
classify as a hit. Therefore Miss cannot occur, and the
only option is for Halt to occur, leading to the final
terminal state, node 94.

For the trivial example we have chosen we can
visually examine the state space. However, in
general, two problems arise when performing state
space analysis of the detailed design model: (1) for
some initial states the state space will be too large to
calculate, and (2) it is impossible to investigate every
scenario, i.e. all initial states.

Therefore, it is desirable to obtain a general state
space that is representative of the dynamics of the
detailed design model under all reasonable
configurations.

GENERALISING THE STATE SPACE

Intuition. Our thoughts on obtaining a general state
space for the detailed design have been based on the
fact that the state spaces have a repetitive structure.
For each iteration there is a sub-graph, the structure
of which is the same for the different iterations, but
the data within the sub-graph of one iteration is
different from the data in another iteration. However,
looking more closely at the data, we see that it is
related. For example, in Figure 6, the target trajectory
in node 32 (iteration 2) is related (by a function) to
the target trajectory in node 2 (iteration 1). To obtain
a generalised state space we need to: relate the data
across iterations, and merge nodes which are only
differentiated by the data.

Figure 6 may be viewed as an unwinding of Figure 4
for three iterations. Intuitively, we would like to
perform the reverse operation and show that Figure 6
can be merged to obtain Figure 4. That is, we would
like to merge iteration 3 into iteration 2, which in turn
is merged into iteration 1, so we obtain a graph with
32 nodes, with node 31 having an arc back to node 2.
This would have an identical structure to the abstract
design state space (Figure 4), although different
annotations. As we will see later, there are boundary
conditions that also need special consideration. The
following gives an overview of two possible
approaches of obtaining a generalised state space.

Equivalence Classes. State spaces with equivalence
classes is a state space reduction technique defined in
(Jensen 1997b) for Coloured Petri nets that also have

tool support in Design/CPN. To use equivalence
classes, two equivalence relations need to be
provided: one on the markings and the other on the
binding elements. Each relation takes two
markings/binding elements as inputs and returns true
if the markings/binding elements are equivalent. In
our case, for example, the equivalence relation for the
markings would define equivalence when the
markings for each individual place are the same,
except for data values, when it is equivalent if each
data value is a function of the other data value (e.g.
target trajectory in iteration 2 = F(target trajectory in
iteration 1)).

All markings that are equivalent are placed in an
equivalence class. Similarly, for binding elements. A
state space with equivalence classes draws
equivalence classes of marking/binding elements as
nodes/arcs. At first thought, applying equivalence
classes to the detailed design model would provide us
with a general state space. The graph would be
similar to the abstract design state space (Figure 4)
where, for example, node 2 represents the class of
markings including nodes 2, 32 and 63 in Figure 6.
However, to be able to relate the state space with
equivalence classes back to the ordinary state space
(which is required for the properties of state spaces to
be maintained e.g. deadlocks), requires certain
conditions on the equivalence relations.

Assuming Figure 4 is our state space with
equivalence classes, the arc from node 31 to 2 in
Figure 4 essentially says we can always start a new
iteration. However, in the detailed design state space
(Figure 6) once the missile is within tolerance for
hitting the target (e.g. node 93) we cannot start a new
iteration, we can only halt as the target has been hit.
Therefore our state space with equivalence classes is
incorrect. This is due to the equivalence relations
being inconsistent. A definition of consistency is
given in (Jensen 1997b).

To compare the abstract and detailed designs, we
have to take into account a subtle difference: the
abstract design allows for infinitely many iterations
while the detailed design, for any reasonable
configuration, results in a finite number of iterations.
We have introduced a condition into the detailed
design model that implies the simulator must
eventually halt. This is based on an assumption that
we must make regarding the behaviour of the missile
and target, and that is that the missile is smart enough
to track down the target. This may not be true in
general, but it is a scenario which we would like to
investigate. Our generalised state space must
represent this eventual halting property. The simplest
way seems to annotate the arc from node 31 to 2 in
Figure 4 with a condition of the form ‘this arc exists
for all iterations except the last one’.

Parameterized State Spaces. Parameterized state
spaces allow us to represent state spaces in a

symbolic way. They are defined for
Predicate/Transition (Lindqvist 1993) and Algebraic
Petri nets (Schmidt 1995) (two other classes of high-
level nets) but there is no current extension for
Coloured Petri nets. Parameters can be used in the
markings to represent multiple, similar markings. A
simple example follows in Figure 7.

T:{x=a1} T:{x=a2} T:{x=x̂ }

A

B C

Â

B̂

(a) (b)

Figure 7: Example of (a) an ordinary & (b)
a parameterized state space

Rather than using the explicit values, a1 and a2, in the
ordinary state space, we can represent them by a
parameter, x̂ .

If we consider another example where we have two
similar parameterized markings (e.g. the number of
tokens in each place is the same), A and B, (or
binding elements), in some cases we can say marking
A includes marking B. If this is the case there is no
need to generate the successor markings from B – we
already have them from A. We could apply this to the
detailed design model. In Figure 6, if node 2 and node
32 were parameterized in a way that 32 was included
in 2, we could merge them. Again we would have an
arc going from node 31 to 2. This arc would need a
condition stating the binding element exists only
when the missile has not hit the target (which is
possible using parameters).

Parameterized state spaces may give us a formal way
of representing symbolic information in our state
space (e.g. the condition on the Miss arc saying it
doesn’t exist for the last iteration) but there are
several questions raised:

1. How are they defined for CPNs?

2. How do we parameterize the markings to obtain
a reduced state space? For example, to merge
nodes, the parameterized markings 2, 32 and 63
in Figure 6 must have the same number of tokens
in each place and the marking of each place must
be a similar parameterized expression. If place
GUIInputs is marked with delta1 in node 2 and
delta2 in node 32 then the two parameters delta1

and delta2 must include the same possible range
of explicit values.

3. Does the consistency problem still exist when we
have a condition on the arc?

At this stage, parameterized state spaces do not seem
feasible to use to obtain a generalised state space of
the detailed design model.

A NEW APPROACH

Overview. The consistency problem discovered using
equivalence classes must be addressed in a
generalised state space. That is, the generalised state
space must reflect the assumption that the system
must halt, as opposed to the abstract design where, at
a higher level of abstraction, the number of iterations
is unbounded. We aim at proving that for any initial
state the detailed design eventually halts. Our
proposed approach is this:

1. Show that essentially our state space is composed
of iterations, and we can examine the structure of
a general iteration, and say that it applies to all
others.

2. Prove that if we input some K into the general
iteration we output some K-1. Here K is a metric
related to the closeness of the target and missile,
and K-1 is a state closer to the end of the
simulation than K. First we must show that we
can test a condition (e.g. the distance between
target and missile) to determine if we have
reached the halt state. Let that distance be
defined as K=0. If we now compose the general
iterations, and input a fixed value for K, we will
eventually reach the end of the simulation, or the
halt state (0).

3. Given that we know the system will eventually
halt, and we have a general iteration, we can
graphically represent all configurations of the
detailed design model composed of general
iterations, as a generalised state space.

The following subsections explain these steps in more
detail, using the example shown in Figure 8, similar
to our detailed design state space.

Structure of the CPN Model. We have already
noted the detailed design state space is structured into
sub-graphs that represent iterations in the simulation.
The CPN model can be used to prove that the state
space is structured in this way. In Figure 5 a
simulation iteration begins when transition Start
occurs. The next and all following iterations begin
when transition Miss occurs. We can think of our CPN
model as a repetition of the transitions and places for
one iteration. The execution of these iterations can
easily be related to the iterations in our state space.
We can see that, as along as we carefully consider the
boundary conditions (which we will later), it is
satisfactory to examine a general iteration, and extend
our results for any number of composed iterations.

Examining a Single Iteration. An iteration begins
when the transition Start or Miss occurs, and ends after
all calculations have been performed and the GUI is
updated. To prove that the system eventually halts,
we need to prove that after each iteration we get
closer to the hit state (i.e. after a Hit occurs). A metric
must be defined for an iteration that tells us if we are
getting closer to the hit state. In general, we desire a

1

2

3

4 5

6

7

8

9

10 11

12

13

14

15

16 17

18

19

Start

Stop

Miss Miss

Stop Hit

1st Iteration 2nd Iteration 3rd Iteration

Figure 8: Example State Space

structure similar to Figure 9. Here, K is the metric,
and we define the hit state as 0. When K is input at
node 2, K-1 is output at node 6. If we take initial K =
3, for example, after performing the iteration the
output will be 2. By composing 3 iterations, if we
input K = 3, we will output 0. This means we have
reached the halt state. Unfortunately, the missile
simulator is not as simple as decrementing one value
during the iteration. In the following we describe the
important issues for examining a single iteration.

2

3

4 5

6 7
Halt

Input: K

Output: K-1

Figure 9: Structure of Single, General
Iteration

The distance between the missile and target, d, will
be used as the metric for our analysis. Although we
don’t explicitly use this value in the detailed design
CPN, we can derive it from the missile and target
positions. When this distance is less than or equal to
the tolerance then we know a hit will occur, this is
how we define the hit state. Note that the granularity
of the simulation is chosen such that the missile
cannot pass the target in a single iteration without a
hit being identified.

During an iteration, the missile and target positions
(and hence, d) are manipulated. If we keep track of all
the changes to d that occur during the iteration we
will output a term d – a, where a is another term. a
may comprise functions and values. If we show that a
is always positive, then we know that given an input
d to the iteration, we will output d – a which is less
than d. Hence, the distance between missile and target
always decreases after each iteration. Since we are
using reals for d, we must specify an adequate

quantum for measurements, e.g. we can only measure
distances to the nearest metre. If so, it follows that by
composing any number of iterations, we will
eventually reach the hit state, i.e. when d is less than
the tolerance.

Of course, our approach depends on a being positive.
Although we believe our functions used in the model
will produce this, we will not know for sure until
further analysis is completed (this is discussed at the
end of this Section). One calculation that needs
special consideration is the updating of the target
trajectory. Until now, this has been by adding a delta
value, obtained by the function GetDelta(), during
every iteration. GetDelta() aims to represent the
changes to the target by the user. We have done very
little investigation into what type of function is best
suited for GetDelta(). But to ensure our system
eventually halts, we now have to pay attention to this
function. It must be chosen in such a way that the
distance between the target and missile converges.
Eventually, we may be able to define a class of
functions for which this occurs. Then we are
guaranteed that the missile will get close enough to
the target for a hit to occur.

Determining the term a can be performed using our
CPN model (Figure 5). This is advantageous because
the majority of our proof can then be done with the
computer tool Design/CPN. We can take the CPN
structure that represents the simulation iteration and
change the declarations and inscriptions to symbolic
values in terms of the metric we are using. For
example, when we add delta to the target trajectory,
we also add it to d. Rather than performing the
calculation on the values (e.g. (100,50,50) + (3,6,5)) in
the CPN we would operate on the term (e.g. d +
delta). The state space for this CPN would give us the
term a that is output. The details of the
implementation are out of the scope of this paper, and
still need further investigation.

GRAPHICAL REPRESENTATION

A Compact Representation. The limitation of
equivalence classes and parameterized state spaces
was the representation of the final iteration – they
didn’t necessarily convey the information that the
system will eventually halt. By following the
approach of the preceding Section, we can prove that
eventual halting is guaranteed. The state space for
any configuration of the detailed design can be drawn
as a composition of general iterations. With this
knowledge, we can use a compact graphical state
space to represent the state space of the detailed
design in any configuration. Figure 10 is our
generalised state space.

Defining the Representation. It is not enough to
simply draw our general state space as in Figure 10.
In fact it is not a state space in the strict sense – they
have no notion of symbolic values, just fixed values.

2

3

4 5

6

7

1

Halt

d:=d-a
if d>Tol
then Miss

Start

Figure 10: Generalised State Space

We need to define what our generalised state space
(which we will continue to call it) represents.

The structure of Figure 10 is similar to any normal
state space where we have a directed graph with
nodes representing markings and arcs representing
binding elements. We have introduced additional
information to represent the metric being used. In
Figure 10, the dashed box shows that at the end of an
iteration (node 6), the metric has been updated, i.e.
d:= d-a. Another modification is the binding element
for the transition Miss is conditional. This means
Miss can occur only if the distance between missile
and target is greater than the tolerance. If not, this arc
does not exist. When unwinding the generalised state
space we generate new nodes when we start each new
iteration. From this we can obtain the structure of the
detailed design state space.

To include specific data in the unwound state space
we must instantiate the markings and binding
elements for some given initial state. To start a new
iteration we need to update the values in the first
node, based on the values used at the end of the
previous iteration. It is necessary to provide a formal
definition of this generalised state space, and relate
them to the CPN model or ordinary state space. This
is left as future work.

DISCUSSION

Summary. We have sketched an approach for
obtaining a general state space for a detailed design
model of a distributed missile simulator. Its ordinary
state space comprised a number of iterations, each
with the same structure. This was problematic as we
may have a large number of iterations, and each
different initial configuration of the system produces
a different state space. With the repetitive structure, it
seems intuitively obvious that we should be able to
represent all the information in a single general state
space.

Equivalence classes with state spaces and
parameterized state spaces are two approaches for
reducing state spaces that seemed applicable to the
missile simulator problem. However, neither seem to

represent the fact that the system will eventually halt.
Our approach is to show from our model that we have
a general iterative structure, and in any configuration,
by composing the iterations we will get the ordinary
state space. We use this to also prove that the system
will eventually halt. A compact graphical
representation of the state space can then be given
that includes all the necessary information.

It is important to note the differences in the
approaches to solving the problem. Equivalence
classes and parameterized state spaces involve
applying a known formal method to the problem.
Their application seemed feasible because initial
thoughts suggested they would give state spaces
similar to the abstract design. However, they revealed
that an important property in obtaining a general
detailed design state space was to show it eventually
halted. Our approach, starts with proving the eventual
halting property, and then it follows that with some
extra annotations on the state space, we can obtain a
generalised state space.

The general state space can be used to see how the
detailed design differs from the abstract design using
automata reduction and comparison techniques. In
turn, the two design models can be compared to the
requirements model, to determine if they are all
faithful refinements.

Future Work. We have only presented the approach
for obtaining a generalised state space of the detailed
design model. The complete application of this
approach to the distributed missile simulator needs to
be completed. Some important issues that need
resolution are:
• Defining the class of appropriate functions for

GetDelta() that result in a convergence of the
missile and target positions.

• Defining our metric, e.g. where and how do we
keep track of the current iteration.

• Using our CPN model and Design/CPN to show
that our metric input into a iteration will be
output with a value closer to the halt state.

Although we are confident with our graphical
representation, for completeness we intend to
provide a formal defintion of it, in relation to the
CPN model.

Finally, our approach has been specifically for our
application, the distributed missile simulator. We
need to investigate to what extent it can be
generalized and the types of applications that it may
be applied to.

REFERENCES
Collas, B., Gordon, S., and Widjaja, H., IWS Design

Specification V1.1. Uni. of SA, Adelaide, 1997.
Gordon, S. and Billington, J., “Analysing a missile

simulator using Coloured Petri nets.” Int’l
Journal on Software Tools for Technology
Transfer, Vol. 2, No. 2, pp. 144-159, Dec. 1998.

Jensen, K., Coloured Petri Nets. Basic Concepts,
Analysis Method and Practical Use. Volumes 1-
3. Springer-Verlag, Berlin, 1997.

Lindqvist, M., “Parameterized reachability trees for
Predicate/Transition nets.” Advances in Petri
Nets. LNCS 674. Springer-Verlag, Berlin
Heidelberg New York, 1993, pp. 301-324.

Meta Software Corporation, Design/CPN Reference
Manual for X-Windows. Version 2.0, Meta
Software Corporation, Cambridge, MA, 1993.

Schmidt, K., “Parameterized reachability trees for
Algebraic Petri nets.” Proc. 16th Int’l Conf.
Application and Theory of Petri. LNCS 935.
Springer-Verlag, Berlin, 1995, pp. 392-411.

Valmari, A., “The state explosion problem.” Lectures
on Petri Nets: Advances in Petri Nets Volume II.
Springer-Verlag, Berlin, 1998, pp 492-528.

BIOGRAPHIES

Steven Gordon completed a BEng in Computer
Systems Engineering at UniSA in 1997, receiving
prizes in a number of subjects. Since then he has
been a PhD candidate within the Institute for
Telecommunications Research and the Computer
Systems Engineering Centre. His research has been
on the general area of verification of distributed
systems using Coloured Petri nets, which has been
applied to a distributed missile simulator and the
WAP Wireless Transaction Protocol. He has had brief
stints working on ITR/CSEC projects, with DSTO
and Telstra in similar areas.

Lars Michael Kristensen received a Ph.D in
computer science from the University of Aarhus,
Denmark in 2000. He received a Master of Science
degree in computer science and mathematics from the
University of Aarhus in 1997. He has been working
as a Research Assistant Professor at the University of
Aarhus, and is currently working as a Research
Associate at the Computer Systems Engineering
Centre at the Univesity of South Australia, Adelaide.
His main research interest include Formal Methods,
Coloured Petri Nets, State Space Methods,
Communication Protocols and Data Networks,
Concurrent Systems, Computer Tools for Validation
and Verification.

Jonathan Billington has B.E. and MEngSc degrees
from Monash University, Australia and a PhD from
the University of Cambridge,UK. After working for
Adelaide University, he spent 15 years with Telecom
Australia Research Laboratories, where he led a team
developing protocol engineering tools and techniques.
Jonathan is Professor of Computer Systems
Engineering at the University of South Australia and
the Director of the Computer Systems Engineering
Centre, where he leads a group researching
distributed and concurrent systems. He has consulted
to various companies and government agencies and is
currently editor of ISO/IEC 15909 on High-level
Petri nets.

