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Abstract—AUTOSAR is an architecture for developing
component-based software applications for vehicles. It
aims to allow control, diagnostic and safety applications
to be developed independent of the vehicle Electronic
Control Units, as well as the vehicle communication bus
technology (e.g. FlexRay, CAN). This paper presents a
formal Coloured Petri net (CPN) model of the AUTOSAR
FlexRay Transport Protocol. After defining the expected
terminal states of the protocol, state space analysis of the
model is used to prove the protocol is free of unexpected
deadlocks. In addition it is shown that the protocol
faithfully refines the service offered to the higher layer,
and that transmit/receive buffers have an upper bound
of frames dependent on the block size and retry limits.
The CPN model not only serves as a mean of verifying
functional properties of the FlexRay Transport Protocol,
but can be adapted to evaluate the protocol performance
for vehicle applications.

Index Terms—formal verification, communication pro-
tocols, automotive applications, Coloured Petri nets

I. INTRODUCTION

Vehicles today contain 10’s to 100’s of embedded
computers, or Electronic Control Units (ECUs), that
together control the engine, airbags, doors, seats, as
well as provide information to other on-board devices
(e.g. telephone, entertainment systems) and to users (e.g.
via an On-Board Diagnostics interface). The increasing
number and complexity of applications using ECUs has
contributed to the development of new in-vehicle com-
munications systems, as well as techniques to simplify
the development of applications utilising multiple ECUs.
For the former, FlexRay [1] is a potential replacement
for Controller Area Network (CAN), a bus for inter-
ECU communications in many vehicles today. For the
latter, automobile manufacturers are developing the Au-
tomotive Open Systems Architecture (AUTOSAR) [2] to
allow software components to communicate irrespective
of the ECU or bus technology (FlexRay, CAN) that is in

use. A specific part of AUTOSAR is the FlexRay Trans-
port Protocol [3], which allows software components to
send longer messages with higher reliability than when
directly using the FlexRay bus.

This paper presents a formal model of the FlexRay
Transport Protocol, as well as analysis results. Formal
modelling and analysis of communication protocols, or
protocol verification [4], [5], is important in system
design stages as functional errors discovered during
testing and usage are expensive to fix. More importantly
in vehicles, unexpected behaviour in communications
systems may lead to fatalities. The aim of our research
is to verify the functional correctness of the FlexRay
Transport Protocol. The key contributions of this paper
are the development of a Coloured Petri net (CPN) [6]
model of the protocol, as well proof, using state space
analysis, of absence of deadlocks in selected configura-
tions of the protocol. The proof is a first steps towards
full verification of the FlexRay Transport Protocol.

The contents of this paper are: Section II provides an
overview of AUTOSAR and the FlexRay Transport Pro-
tocol. Section III introduces CPNs and explains how they
are used in protocol verification. Section IV presents our
CPN model of the protocol. State space analysis results
proving the absence of deadlocks are given in Section V,
followed by concluding remarks in Section VI.

II. IN-VEHICLE COMMUNICATIONS SYSTEMS

A. AUTOSAR and FlexRay

A vehicle typically consists of 10’s of ECUs, as well
as sensors and actuators, connected via one or more
communication buses. AUTOSAR [2] is an architecture
that aims to simplify the development of component-
based in-vehicle software applications by hiding the
complexities of the ECU’s and communications bus from
components. Software components communicate via a
Virtual Functional Bus (VFB) as shown in Fig. 1.
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Fig. 1. AUTOSAR communication via a Virtual Functional Bus

The VFB is implemented by one Run Time Envi-
ronment (RTE) per ECU. AUTOSAR specifies standard
interfaces between the RTE and the ECU operating
system, device drivers, communication mechanisms and
microcontroller. In AUTOSAR these are referred to as
the Basic Software as shown in Fig. 2, and in further
detail in Fig. 3.
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Fig. 2. Structure of ECU’s in AUTOSAR
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Focussing on the communication mechanisms (high-
lighted in Fig. 3, with selected blocks shown in Fig. 4),
data to be sent between software components is delivered
by the AUTOSAR Communications (COM) layer to the
PDU Router. AUTOSAR COM provides an communi-
cations API for applications—it is based on OSEK/VDX
COM [7]. The PDU Router determines the technique to
transport data between software components (e.g. selects
from different bus standards such as FlexRay and CAN,
as well as features required).
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Fig. 4. AUTOSAR FlexRay Layered Architecture

If FlexRay is selected by the PDU Router, then the
FlexRay Transport Protocol may be used to provide
reliability and efficiency features not offered by the
FlexRay bus (discussed further in Section II-B). Below
the communication services is the FlexRay interface
which provide an abstract interface to the FlexRay
drivers and FlexRay controller (which may be imple-
mented internal or external to the microcontroller).

The focus of this research is on the FlexRay Trans-
port Protocol within the AUTOSAR architecture. Many
of the blocks in AUTOSAR are based on existing
standards/protocols/software and have been used/tested
extensively. The FlexRay Transport Protocol is in fact
based on an existing CAN/ISO transport protocol. How-
ever several significant extensions are introduced which
warrants in-depth, formal analysis of its operation.

B. FlexRay Transport Protocol in AUTOSAR

FlexRay [1] defines a physical and data link layer
protocol for distributed bus-based communication be-
tween a set of controllers. The physical layer allows
each controller to connect via one or two channels at
data rates of 10Mb/s. The data link layer uses TDMA
allowing each controller to transmit 255 bytes of data in
a frame per time slot.

The FlexRay Transport Protocol (FrTp) provides both
a confirmed and unconfirmed communications service
for AUTOSAR applications that use a FlexRay bus.
It is partly based on ISO 15765-2 [8], a standard for
unconfirmed communications for diagnostic applications
in a CAN-based vehicle. In addition FrTp provides extra
reliability features (e.g. acknowledgements and retries) to
offer confirmed communications. Segmentation and flow
control are also implemented to improve performance.
The error/flow control scheme is based on Go-Back-N.
This research, and subsequent description, focusses on
the confirmed service, as it is a substantially different
from and more complex than the existing ISO 15765-2



protocol. Only features relevant to the modelling/analysis
tasks are described; for a full treatment of FrTp see [3].

1) FrTp Service Specification: Application and/or di-
agnostics data is sent via AUTOSAR COM or DCM to
the PDU Router. If required, the PDU Router delivers
that data to FrTp, which then transfers the data to the
destination ECU, PDU Router and eventually applica-
tion. The service provided by FrTp to the user (PDU
Router) is informally described in Section 5 of [3]. A
set of service primitives are defined, as shown in Fig. 5.
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Fig. 5. FrTp Service Primitives

The key primitives for data transfer are:
1) FrTp Transmit is called by PDU Router to initiate

data transmission at the Sender.
2) The FlexRay Interface (FrIf) is used to transmit

that data to the Receiver FrTp.
3) Upon successfully receiving the data, the Re-

ceiver passes that data to the PDU Router via
PduR FrTpRxIndication. In addition a confirma-
tion is sent to the Sender and passed to the PDU
Router as PduR FrTpTxConfirmation(successful).

4) Unsuccessful delivery of data results in no in-
dication to the Receiver PDU Router, but a
PduR FrTpTxConfirmation(unsuccessful) is deliv-
ered to Sender PDU Router.

Other primitives are used for optional features such
as cancelling a transmission. Our analyse does not yet
consider these optional features.

Although [3] defines the set of service primitives,
there is no formal definition of the valid sequences of
primitives. We have defined a set of sequences based
on our understanding of the protocol and AUTOSAR
architecture. Fig. 6 shows the set of sequences as a FSA.

2) FrTp Protocol Specification: The FrTp protocol
specification is given in sections 7, 8 and 9 of [3]. Data
can be sent using different methods with FrTp:
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Fig. 6. Desired FrTp Service Language

1) Unacknowledged segmented or unsegmented
transfer

2) Acknowledged segmented or unsegmented trans-
fer, but no retries

3) Acknowledged segmented or unsegmented transfer
with retries

4) Unacknowledged segmented or unsegmented mul-
ticast transfer

The first method is identical to ISO 15765-2, while
the other three are new. This paper addresses only the
unicast acknowledged transfer (methods 2 and 3).

Different frame types are used in FrTp. A Single
Frame (SF) is used to carry data when the data to
send does not exceed the payload capacity of a FlexRay
frame. A First Frame (FF) is the first frame sent when
segmentation is needed (data to send is greater than
payload capacity). Consecutive Frames (CF) are sent
after the FF. In the return path Flow Control (FC) frames
are sent by the receiver to control the sending rate: CTS
value is set if the receiver is ready to receive; WAIT value
is set if the sender must wait; and OVERFLOW value is
set if receiver has exhausted its buffer. Finally, a Positive
Ack (PACK) indicates all data has been successfully
received, while a Negative Ack (NACK) indicates an
error (and the transfer should be aborted).

An example of FrTp with segmented, acknowledged
transfer with retries is illustrated in Fig. 7. The FF is
transmitted and upon receipt the Receiver replies with a
FC frame indicating the Sender is clear to send the next
frames. Included in the FC frame is the Block Size (BS)
which indicates the number of CFs the Sender may send
before waiting for the next Ack/CTS.

If a frame is lost or arrives with errors, the receiver
sends a NACK indicating the frame that is missing (all
frames contain sequence numbers). Upon receiving the
NACK the sender must retransmit all frames sent but
not yet acknowledged. This is a Go-Back-N error/flow
control scheme. Once all data is received by the Receiver
(the total data length is included in the First Frame), a
PACK is sent indicating the successful completion of
data transfer.
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III. COLOURED PETRI NETS FOR PROTOCOL

VERIFICATION

Petri nets are a formal method that are well suited to
the analysis of distributed systems, including protocols,
because of their ability to express concurrency, non-
determinism and system concepts at different levels
of abstraction. They have an underlying mathematical
definition, therefore allowing for proof of static and
dynamic properties of the system modelled, as well as
a graphical notation that, with computer tool support,
allows non-experts to apply them to the modelling of
practical systems. CPNs [6] are a class of high-level
nets that extend the features of basic Petri nets. Sec-
tion III-A provides an informal definition of CPNs, while
Section III-B describes their role in verifying protocols,
as well as the related work in this area.

A. Coloured Petri Nets

CPNs are directed graphs with two types of nodes:
a set of places, P , and a set of transitions, T . These
nodes are normally illustrated as ellipses and rectangles,
respectively. Directed arcs can only be from place to
transition (input arcs) or transition to place (output arcs).
Directed arcs can only be between nodes of different
types. Places are typed by a colour set. The colour set
determines the type of values that can mark a place.
These values are called tokens. A multiset of tokens

in a place p is called its marking (M(p)) and the
marking of the CPN comprises the marking of all places
(M ). Transitions and arcs can also have inscriptions
(expressions).

The execution of a CPN consists of occurrence of
transitions. A transition can occur if it is enabled, and it
is enabled if: for all input places, sufficient tokens exist
that satisfy the input arc inscriptions; and the transition
inscription (or guard) evaluates to true.

Variables, which are local to a transition, may be
used in inscriptions. The values they are bound to on
occurrence of a transition give, together with the transi-
tion name, a binding element. When a transition occurs,
tokens required by the input arcs are removed from the
input places, and the evaluation of the expression on the
output arcs give the tokens to be added to the output
places.

As an example consider the transition FrTp Indication
in Fig. 10. There are input arcs from places
Data Received and Indication Sent. Considering the in-
scriptions on these arcs, as well as the transition guard
(enclosed in [ and ]), this transition is enabled if:

1) M(Data Received) = (x, x, ) where x <> 0
2) and M(Indication Sent) = true
The occurrence of this transition will remove tokens

from the input places and create 1 Indication token in
To Rx PduR and 1 true token in Indication Sent.

The main benefit of creating formal models is that
certain properties of the models can be proved. State
space analysis is one method for doing this formal
analysis. A state space of a CPN is a directed graph with
nodes representing the marking (or state) of the CPN and
arcs representing the binding elements (or state changes
or events). By generating the complete state space from
some initial marking properties such as reachability,
deadlocks, livelocks and bounds can automatically be
proven for the system modelled. The state explosion
problem is however a significant limitation to this formal
analysis approach when analysing complex protocols.

B. Protocol Verification Methodology

As stated early, it is important to verify that commu-
nication protocols used within vehicles operate correctly.
To do so, two sets of properties of the protocol must be
considered.

Firstly, there are dynamic properties of a protocol that
are expected from its correct operation. Common desired
properties include the absence of deadlocks and livelocks
in the protocol. Other properties may be specific to the
protocol, such as the number of messages stored in a



receive buffer never goes above a pre-defined limit. State
space analysis is well-suited to automatically proving a
desired set of properties of a protocol.

The second set of properties of interest are the inter-
actions between the protocol and the user, where the
user may be another protocol, a software component
or (less likely) a human. The users requirements of
the protocol, or service specification, should define the
set of possible interactions between user and protocol.
The interactions are referred to as service primitives
and the set of possible orderings the service language.
Protocol verification aims to prove that the protocol
faithfully implements the desired service specification.
If the desired service language is known (in some
cases it is specified in the protocol standard, in other
cases it can be derived from related information), the
state space of the protocol can be used to verify the
faithful refinement of service. The protocol state space
defines the set of interactions between protocol and user,
as well as detailed protocol operations (e.g. timeouts,
message transmission and reception). Treating the state
space as a deterministic finite state automata, and then
hiding the detailed protocol operations (i.e. considering
all events that are not interactions with the user as ε-
transitions in the FSA), the minimised deterministic FSA
can be obtained (i.e. the protocol language) and easily
compared to the desired service language. If the protocol
and service languages are identical, then it is verified that
the protocol faithfully refines the desired service.

The steps for proving the properties described above
are part of a commonly applied protocol engineering
methodology [5]. Although different methods can be
used, Coloured Petri nets are well suited to the task,
as has been demonstrated in numerous examples [9],
[10], [11], [12]. The steps applied in this research are
summarised in Fig. 8.

Numerous researchers have considered AUTOSAR
design issues, including automated testing [13], [14]
and hardware-in-the-loop analysis [15], but to date there
has been no formal analysis of the FlexRay Transport
Protocol. Two works similar to our research are [16]
and [11]. [16] uses CPNs to model and evaluate the
performance of a CAN bus. A timed CPN is used to
measure throughput and latency in a simple CAN net-
work. However [16] is not attempting formal verification
of the protocol, nor focussing on AUTOSAR or FlexRay.
[11] presents extensive formal verification of a class
of stop-and-wait protocols. Properties of the protocols
are proved for arbitrary parameter values (unlike this
paper which addresses analyses only several values).
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Fig. 8. Protocol Verification Methodology for FrTp

However our work considers a different, more complex
protocol (Go-Back-N based, instead of stop-and-wait)
and includes detailed modelling of the FrTp interaction
with the higher layer.

C. Tool Support

CPN Tools1 is the most popular tool for creating
and analysing CPNs. It supports graphical editing of
the model, simulation to validate the design, and state
space analysis. Other features include support for timed
CPNs, external visualisations and advanced state space
reduction techniques. For inscriptions CPN Tools uses a
variant of the functional programming language Standard
ML called CPN ML. CPN ML is also used to perform
queries on the state space to automatically prove prop-
erties of the model.

Using CPN ML queries, the state space can be saved in
a textual format suitable for analysis using AT&Ts FSM
Library2. This is used to generate the protocol language
and comparison with the service language.

IV. CPN MODEL OF FLEXRAY TRANSPORT

PROTOCOL

In creating the FrTp CPN model the following as-
sumptions are made:

1) The optional features of cancelling a transmission
and changing parameters are not modelled.

2) The FlexRay communications bus guarantees or-
dered delivery (i.e. FIFO queue). Both cases of a
reliable and unreliable (lossy) bus are modelled.

3) Basic ISO-compliant frame types are used (as
opposed to optional extended frames).

1http://wiki.daimi.au.dk/cpntools/
2http://www.research.att.com/˜fsmtools/fsm/



(∗ Default values of system constants ∗)
val WholeDataC = ref 100;
val FrameSizeC = ref 100;
val BSC = ref 1;
val InitialSNC = ref 0;
val MaxRetryC = ref 1;
val TimeoutEnableC = ref true ;
val LossEnableC = ref true ;
val OVFLWenableC = ref true;
(∗ Data types (colour sets ∗)
colset FrameType = with SingleFrame | FirstFrame |

ConsecutiveFrame | FlowControl | AckFrame;
colset FrameState = with CTS | WT | OVFLW |

FrameStateNotSet;
colset Ack = with Positive | Negative | AckNotSet;
colset Frame = record ft :FrameType ∗

dl :DataLength ∗
fs :FrameState ∗
sn:SN ∗
ack:Ack ∗
bs:BlockSize ∗
data :Data;

colset Frames = list Frame;
colset DataRemain = product BytesLeft ∗ SentTmp ∗ SN;
colset DataInfo = product INT∗INT∗INT∗INT∗INT;
colset NSDU = with Transmit | Indication | Successful |

Unsuccessful ;
colset DataReceived = product DataLength ∗ RxdFrame ∗ SN;
colset BSxSN = product INT∗INT;
colset Timeout = product INT∗INT∗INT∗INT;
(∗ colsets not listed are of type int ∗)
(∗ variable and function definitions are not shown ∗)

Fig. 9. Selected FrTp CPN Declarations

A. FrTp Protocol CPN

FrTp is modelled as a hierarchical CPN, with the top-
level page shown in Fig. 10, and sub-pages in Figures 11,
12 and 13. Important constants and data types (colour
sets) used in the model are in Fig. 9.

The flow of data for a single message sent from Sender
to Receiver is highlighted by the thick arcs in the top-
level page. On the left of the page is the Sender, in
the middle is the communications channel, and the right
is the Receiver. At the top the interface between PDU
Router and FrTp is modelled. The initial marking of
From Tx PduR is 1‘Transmit. This indicates the PDU
Router has data ready to transmit. The occurrence of
FrTp Transmit models the delivery of that data to FrTp.

The actual data is not modelled (it does not affect
the operation of the protocol): instead the model records
the size of the data (in bytes). The place Data to Send
contains a 5-tuple: bytes remaining to be acknowledged;
bytes remaining to be sent; sequence number of of
next frame to be acknowledged; sequence number of

next frame to be sent; and current block size. This
information is used and updated by transitions modelling
the generation of frames, as well as reception of frames
(in Fig. 12).

Frames containing data are generated and stored in
the Tx buffer (Sender FRTP). This, as well as the Rx
buffer (Receiver FRTP), is modelled as a FIFO queue.
The type of frame generated (Single Frame, First Frame,
Consecutive Frame) depends on the data size, block size
and previous frames generated. The inscription on the arc
from Generate Frame to Sender FRTP contains CPN
ML functions that generate the appropriate frame.

The communications channel is modelled as a full-
duplex, ordered medium. In addition, both the case of
reliable and unreliable (lossy) channel are modelled.
Using the standard CPN ML constructs for modelling
FIFO queues, a list of frames is stored in Data Channel.
Initially empty, the occurrence of TxFrame adds a frame
to the tail of the list and RxFrame extracts the frame
from the head of the list. The function LossEnable()
returns true if a model input configuration variable is set
to enable frame loss. In that case, transition Packet Loss
will be enabled whenever a frame is in Data Channel,
and its occurrence deletes a frame from the head of
the list. As the focus is on functional properties of the
protocol (not performance), loss is non-deterministic:
any frame may either be lost or received.

Upon receiving a data frame, the Received processes
the received frame. The detailed procedure is modelled
on a sub-page (Fig. 11) represented by the transition
Process Rxd Frame. The place Data Received models
the total number of bytes expected, the bytes received,
and the next expected sequence number in a 3-tuple.
Once the bytes received equals the bytes expected the
data can be delivered to the Receiver PDU Router. This
is modelled by the FrTp Indication transition, putting an
Indication token in To Rx PduR.

As data frames are processed by the Receiver
(Fig. 11), FC, NACK and PACK frames may be sent on
the return Ack channel. Upon reception the Sender pro-
cesses the frame, as modelled on sub-page Rx Ack. If a
FC frame is received, depending on the number of retries
(Number of Retry, new data frames may be generated
and sent. If a PACK is received, then the data transfer
is successful and via the PduR FrTpTxConfirmation sub-
page, a Confirmation(Successful) service primitive is de-
livered to the PDU Router. If a FC(Overflow) is received,
or the maximum number of retries has been reached, a
Confirmation(Unsuccessful) primitive is delivered to the
PDU Router.
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Time is not explicitly modelled in the CPN. The
occurrence of the Timeout transition is non-deterministic:
if data has been sent, the timeout may or may not occur
before the ACK is received.

B. FrTp Model Parameters

Key input parameters to the model are:
WD (Whole Data) size of the data sent by the PDU

Router [bytes]
FS (Frame Size) maximum size of payload in a

frame [bytes]
BS (Block Size) number of blocks Receiver allows

to be sent before FC
MR (Max Retry) maximum number of retries

Sender makes before aborting the transfer
Loss if true then frame loss is possible in the chan-

nel; otherwise a reliable channel is assumed
Varying the values of these parameters allows for

investigation of FrTp under different conditions.

V. FORMAL ANALYSIS OF FRTP

Analysis of the FrTp CPN is an iterative process.
Simulation of the CPN is used to step through selected
sequences to validate the operation of the model. Then,
after defining a set of desired properties of the protocol,
the state space is generated and the properties verified.
As errors in the model are discovered the process is
repeated. This section defines and reports the final set
of desired properties and results from the state space
and language analysis. These were in fact obtained
from multiple iterations of simulations, analysis and
refinement.

A. Desired Properties

A key property of any protocol is absence of dead-
locks. Deadlocks are identified as unexpected terminal

markings in the state space. A terminal marking is
defined as (from Definition 9.19 in [6]):

Definition 1 (Terminal Marking). M is a terminal
marking if and on if:

∀t ∈ T : ¬(M t−→) (1)

The set of terminal markings is MTM . Three sets of
expected terminal markings—MSS , MUU and MUS—
are defined based on the intended operation of FrTp.
For brevity assume:

Pchannel = {Data Channel, Ack Channel} (2)

Pbuffer = {Sender FRTP, Receiver FRTP} (3)

Marking MSS should be reached if both Sender and
Receiver have successfully completed the data transfer:

MSS(p) =



Successful if p = To Tx PduR
(0, 0, x, x, ) if p = Data to Send
Indication if p = To Rx PduR
true if p = Indication Sent
(WD,WD, ) if p = Data Received
[] if p ∈ Pchannel

[] if p ∈ Pbuffer

∅MS if p = Confirmation
∅MS if p = Ack Frame

otherwise
(4)

∅MS is the empty multiset (no tokens in the place),
and following Standard ML notation is any value and
[] is an empty list.

Marking MUU should be reached if the data transfer is
unsuccessful and both transmitter and receiver are aware
of the failure:

MUU (p) =



Unsuccessful if p = To Tx PduR
∅MS if p = To Rx PduR
false if p = Indication Sent
[] if p ∈ Pchannel

[] if p ∈ Pbuffer

∅MS if p = Confirmation
∅MS if p = Ack Frame

otherwise
(5)

Finally, there may be a case where the receiver suc-
cessfully receives the data, but the transmitter is not
informed of this (e.g. the acknowledgement cannot be
delivered successfully):



MUS(p) =



Unsuccessful if p = To Tx PduR
Indication if p = To Rx PduR
true if p = Indication Sent
(WD,WD, ) if p = Data Received
[] if p ∈ Pchannel

[] if p ∈ Pbuffer

∅MS if p = Confirmation
∅MS if p = Ack Frame

otherwise
(6)

The first desired property of FrTp is:

Property 1 (Absence of deadlocks). The FrTp CPN
contains no deadlocks if and only if:

MTM = MSS ∪MUU ∪MUS (7)

Ideally the protocol language and desired service lan-
guage should be equivalent. The desired service language
(LS) is defined as the language accepted by the FSA in
Fig. 6.

Property 2 (Language equivalence). The FrTp Protocol
language (LP ) is equivalent to the FrTp Service lan-
guage (LS) if and only if:

LP ⊆ LS ∧ LS ⊆ LP (8)

Understanding the number of frames that can be in
the network at any one time is useful in dimensioning
transmit/receive buffers as well as the FlexRay bus
capacity and utilisation. Although not explicitly stated
in the specification [3], both the buffers and channels
should be bounded. It is difficult to know the upper
bounds prior to analysis, and hence state space analysis
was used to determine the bounds. Therefore in this
paper rather than defining the bounds as properties, we
simply report the bounds measured from the state space
analysis in the next section.

B. State Space Analysis

For a given set of input parameter values, CPN Tools
can calculate the full state space of the FrTp CPN. Then
CPN ML queries can be applied to prove properties from
the state space. For example, a CPN ML query function
was written to check if all terminal markings are one of
either MSS , MUU or MUS .

The set of input parameter values analysed in this
paper are3: WD: 100, 200, 300, . . . , 1000 [bytes]; FS:

3In fact other parameters values have also been used, e.g. with
WD not a multiple of FS and with no frame loss, but are omitted
due to space.

100 [bytes]; BS: 1, 2, 3; MR 0, 1, 2; Loss: true.
Results from the state space analysis are shown in Ta-

ble I. The first three columns indicate input parameters.
The next two columns give the size of the state space
(States and Arcs). Columns six to nine give the number
of markings in: MTM ; MSS ; MUU ; MUS . The last four
columns give the maximum number of frames in: Data
channel; Ack channel; Tx buffer; and Rx buffer.

The first observation from the state space analysis is
that Property 1 (Absence of Deadlocks) is proved to hold
for all configurations analysed (in Table I, TM = SS+
UU + US).

Secondly, observing the measured upper bounds on
data channel and buffer places, we conjecture that the
buffer space needed for data frames is given by (9):

UBdata =


1 +MR if WD

FS ≤ 2
(BS − 1)(1 +MR) if 2 < WD

FS ≤ BS
BS(1 +MR) otherwise

(9)
Equation 9 holds for the configurations analysed. In

general, the maximum number of data frames in the
buffer/channel at one time consists of the original blocks
of CFs, plus retransmitted blocks of CF. Further work is
needed to prove this for all cases.

State space analysis is powerful for investigating dy-
namic properties of the FrTp CPN. However there are
two limitations of this analysis approach. Firstly, as
the number of frames to be transmitted (WD) and the
maximum retries allowed (MR) increase, the number of
states increased. This is the state explosion problem, and
eventually leads to state spaces that cannot be calculated
in reasonable time/memory4. A promising technique to
alleviate the state explosion problem is to utilise the
sweep-line method [17]. This method discards states
from memory if the can no longer be reached. This has
been applied for other protocols, where properties can
be proved for state spaces 2-3 times the size of when
sweep-line is not applied [12]. In FrTp the number of
retries could be used as a progress measure to determine
which states can/cannot be reached in the future.

Another limitation is that a separate state space must
be calculated for every combination of initial parameter
values. For instance, FrTp supports block sizes of 1 to
16. The analysis has only so far considered block sizes
of 1 to 3. As future work the CPN model can be modified
to abstract from some of the initial parameters (e.g. not

4The state space sizes shown in Table I are quite small; a
configuration not reported had 100,000 nodes generated in 1 hour



TABLE I
STATE SPACE ANALYSIS OF FRTP PROTOCOL CPN

WD BS MR S A TM SS UU US Data Ack Tx Rx
100 1 0 36 67 3 1 1 1 1 1 1 1
200 1 0 64 119 5 1 3 1 1 1 1 1
300 1 0 92 171 7 1 5 1 1 1 1 1
400 1 0 120 223 9 1 7 1 1 1 1 1
500 1 0 148 275 11 1 9 1 1 1 1 1
600 1 0 176 327 13 1 11 1 1 1 1 1
700 1 0 204 379 15 1 13 1 1 1 1 1
800 1 0 232 431 17 1 15 1 1 1 1 1
900 1 0 260 483 19 1 17 1 1 1 1 1

1000 1 0 288 535 21 1 19 1 1 1 1 1
100 1 1 170 493 4 2 1 1 2 2 2 2
200 1 1 496 1442 8 2 5 1 2 2 2 2
300 1 1 790 2270 11 2 8 1 2 2 2 2
400 1 1 1096 3140 14 2 11 1 2 2 2 2
500 1 1 1402 4010 17 2 14 1 2 2 2 2
600 1 1 1708 4880 20 2 17 1 2 2 2 2
700 1 1 2014 5750 23 2 20 1 2 2 2 2
800 1 1 2320 6620 26 2 23 1 2 2 2 2
900 1 1 2626 7490 29 2 26 1 2 2 2 2

1000 1 1 2932 8360 32 2 29 1 2 2 2 2
100 1 2 550 2024 5 3 1 1 3 3 3 3
200 1 2 2996 11488 12 3 7 2 3 3 3 3
300 1 2 4861 18001 16 3 11 2 3 3 3 3
400 1 2 7093 26114 20 3 15 2 3 3 3 3
500 1 2 9361 34323 24 3 19 2 3 3 3 3
600 1 2 11629 42532 28 3 23 2 3 3 3 3
700 1 2 13897 50741 32 3 27 2 3 3 3 3
800 1 2 16165 58950 36 3 31 2 3 3 3 3
900 1 2 18433 67159 40 3 35 2 3 3 3 3

1000 1 2 20701 75368 44 3 39 2 3 3 3 3
100 2 0 36 67 3 1 1 1 1 1 1 1
200 2 0 64 119 5 1 3 1 1 1 1 1
300 2 0 115 246 6 1 4 1 2 1 2 2
400 2 0 143 298 8 1 6 1 2 1 2 2
500 2 0 194 425 9 1 7 1 2 1 2 2
600 2 0 222 477 11 1 9 1 2 1 2 2
700 2 0 273 604 12 1 10 1 2 1 2 2
800 2 0 301 656 14 1 12 1 2 1 2 2
900 2 0 352 783 15 1 13 1 2 1 2 2

1000 2 0 380 835 17 1 15 1 2 1 2 2
100 2 1 170 493 4 2 1 1 2 2 2 2
200 2 1 524 1545 8 2 5 1 2 2 2 2
300 2 1 1468 5082 10 2 7 1 4 2 4 4
400 2 1 3455 12446 13 2 10 1 4 3 4 4
500 2 1 5376 19924 15 2 12 1 4 4 4 4
600 2 1 7815 29150 18 2 15 1 4 4 4 4
700 2 1 10990 42127 20 2 17 1 4 4 4 4
800 2 1 13715 52301 23 2 20 1 4 4 4 4
900 2 1 17037 65853 25 2 22 1 4 4 4 4

1000 2 1 19852 76309 28 2 25 1 4 4 4 4
100 3 0 36 67 3 1 1 1 1 1 1 1
200 3 0 64 119 5 1 3 1 1 1 1 1
300 3 0 115 246 6 1 4 1 2 1 2 2
400 3 0 281 749 7 1 5 1 3 2 3 3
500 3 0 309 801 9 1 7 1 3 2 3 3
600 3 0 360 928 10 1 8 1 3 2 3 3
700 3 0 526 1431 11 1 9 1 3 2 3 3
800 3 0 554 1483 13 1 11 1 3 2 3 3
900 3 0 605 1610 14 1 12 1 3 2 3 3

1000 3 0 771 2113 15 1 13 1 3 2 3 3



modelling the data size, WD, explicitly). For analysis,
approaches such as [18] that verify properties indepen-
dent of the initial parameters can also be considered.

C. Language Analysis

The FrTp protocol language, LP , is the set of in-
teractions possible between FrTp and the PDU Router.
Property 2 requires it to be equivalent to the ser-
vice language in Fig. 6. There are four transitions in
the FrTp CPN that correspond to interactions between
FrTp and PDU Router: FrTp Transmit, FrTp Indication,
Successful and Unsuccessful (the last two, on page
PduR FrTpTxConfirmation, are cases of the primitive
Confirmation). All binding elements (arcs) in the state
space that contain these four transitions are mapped to
their corresponding primitive. All other binding elements
(arcs) in the state space are considered ε-transitions.
As a result the state space can be treated as a non-
deterministic FSA, which can be reduced to its canonical
form, a minimised deterministic FSA, representing the
protocol language.

For every configuration considered in Section V-B, the
protocol language produced was equivalent to the service
language (hence proving Property 2).

VI. CONCLUSIONS

AUTOSAR is an architecture for developing and
deploying embedded applications in vehicles. One of
the many components of AUTOSAR is the FlexRay
Transport Protocol, which provides additional reliability
and efficiency to the FlexRay inter-ECU communications
bus. Key contributions of the paper are:

1) A formal Coloured Petri net model of the AU-
TOSAR FlexRay Transport Protocol.

2) Definition of the desired FrTp service language.
3) Definition of the desired properties of the FrTp

protocol, in particular the expected terminal states.
4) Proof, via state space and language analysis, that

the FrTp protocol is free of deadlocks and faith-
fully refines the FrTp service, for a given set of
initial parameter values.

5) Characterisation of the upper bounds of the FrTp
transmit and receive buffers.

Future work includes verifying other configurations of
FrTp, and modifying the model to alleviate the problems
of using state space analysis (state explosion, dependence
on initial parameters). Once functional verification is
achieved, the model can be adapted to support perfor-
mance evaluation, completing the analysis and verifica-
tion of the FlexRay Transport Protocol.
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