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Abstract—Low Extra Delay Background Transport (LED-
BAT) congestion control algorithm is designed to address the
unfairness problem of TCP aggravated by applications that use
multiple TCP connections for data transfer. LEDBAT operates
under the assumption that the queue delay at the access router
of the bottleneck link will be the primary varying contributor
to end-to-end one-way delay. However this assumption will
not hold if a route change occurs, which causes significant
variations in the path delay. This paper analyses the impact
of route changes on LEDBAT throughput and fairness. In
addition to a formal description of the behaviour of LEDBAT
congestion window when route changes, we present results
from simulations showing the negative impact of route changes
on throughput for a LEDBAT source and fairness with other
sources. Importantly, our analysis shows that more work is
needed to improve LEDBAT performance in the case of route
changes before the novel algorithm can be considered as a
suitable congestion control algorithm in the Internet.

Keywords-LEDBAT, delay variability, congestion control,
peer-to-peer file sharing, route changes.

I. INTRODUCTION

Motivated by the unfairness problem in TCP aggravated
by applications that use multiple TCP connections to transfer
data in the Internet, the Low Extra Delay Background
Transport (LEDBAT) congestion control algorithm has been
developed as an alternative for such applications [1]. By
using multiple TCP connections an application from one
customer can induce significant queue delays in the ISP’s
access router, severely impairing the performance of voice,
video and gaming applications of other customers. Therefore
a LEDBAT source adjusts its sending rate to maintain the
queue delay in the access router at or below a pre-defined
target. The LEDBAT source aims to saturate the bottleneck
link in the path to the destination in order to achieve high
throughput for applications when no other traffic exists. A
competing aim is also to yield quickly when other (TCP
or UDP) sources start sending over the bottleneck link.
Micro Transport Protocol (uTP) [2] is an application layer
congestion control protocol used by µTorrent (a widely used
UDP-based BitTorrent protocol) and similar to LEDBAT [1].

LEDBAT is a distributed one-way delay-based algorithm,
designed to provide a lower-than-best-effort service for
background file transfer applications, especially P2P file
sharing. It operates under the assumptions that the queue
delay at the access router of the bottleneck link will be the

primary varying contributor to end-to-end one-way delay,
and the access router does not employ Active Queue Man-
agement (AQM). This is typical in numerous ISP networks
[3], [1]. To measure the queue delay a LEDBAT source adds
a timestamp to each data packet sent; the receiver calculates
the one-way delay, returning the value in acknowledgement
packets. The source then estimates the queue delay from
the difference between the current one-way delay and a
base one-way delay calculated during a given period of time
rather than the start of the connection. The LEDBAT source
controls its sending rate by updating its congestion window1,
w, for every ACK received:

w(t+1) =


1
2w(t) if packet loss

w(t) +G
dtar−d̂que(t)

w(t) otherwise
(1)

where d̂que is the current estimated queue delay, dtar is the
target delay and G is the gain. dtar and G (both constants)
are two key parameters that influence how well LEDBAT
achieves its aims of saturating the bottleneck and yielding
quickly to other traffic [5], [6].

The LEDBAT congestion control algorithm in [1] assumes
that only queue delay varies while other components of delay
are approximately constant. This is not always true in a
typical Internet environment [7]. However, route changes in
the Internet can in fact cause the time it takes to send a
packet from the source to destination to vary, excluding the
time spent in the queue. This can be due to different link
delays and consequently path delays existing on different
routes in the Internet. By link delay, we mean the time
it takes to get an IP packet across a link. This includes
transmission, waiting, and retransmission by the data link
layer protocol. The path delay (dpath) is simply the sum
of the link delays in the access (daccess) and core (dcore)
networks and queuing/processing delay at routers (dque).
When using the same route, small variations in the path
delay are possible because of varying link and queuing
delays. But when a route changes, large changes in the path
delay may occur. Therefore, route changes play a significant
role in delay variability. We assume only the change in path

1As with TCP, the LEDBAT sending rate and congestion window are
approximately proportional [4]



delay due to route changes significantly contributes to delay
variability beyond an ISP network [7].

As far as we know, no work has analysed the impact of
route changes on the throughput and fairness of LEDBAT.
This is opposite to the works in [8], [9] that showed the
impact of route changes on the performance of TCP-Vegas,
a delay-based congestion control algorithm similar to LED-
BAT. Therefore, our work is significant towards considering
LEDBAT as a suitable congestion control algorithm in the
Internet.

In this paper, we analyse the impact of route changes
on LEDBAT throughput and fairness under different net-
work conditions. We start by mathematically describing
the behaviour of LEDBAT congestion window when route
changes, used to support the discussion of our analysis
results. Our results from simulations show that LEDBAT
throughput is negatively affected when route changes result
in an increasing one-way path delay while the LEDBAT fair-
ness objective of keeping queue delay as low as the target is
compromised for the case of decreasing one-way path delay.
Additional results indicate that decreasing the average time
between successive changes of path delay causes LEDBAT
throughput to decline with increasing average magnitude of
change of path delay. Importantly, our analysis show the
need for more work to improve the performance of LEDBAT
in the case of when route changes.

The rest of this paper is organized as follows. Section II
reviews recent works on LEDBAT. The description and
assumptions of our network scenario and a model of LED-
BAT congestion window when route changes are given in
Sections III and IV, respectively. LEDBAT performance is
analysed via simulations in Section V with results showing
the negative impact of route changes on the performance of
LEDBAT. Concluding remarks are given in Section VI.

II. RELATED WORK

The problem of congestion in a network started back in
the 80s [10]. Ever since then, numerous congestion control
algorithms have been proposed in the literature and some of
which are used in the Internet today. They can be grouped
as: loss-based, delay-based, rate-based, and low-priority.
LEDBAT exhibits characteristics of delay-based and low-
priority algorithms. However, the novel algorithm differs
from many such algorithms including TCP-Vegas [11], TCP-
NICE [12] and TCP-LP [13], in that it aims at minimizing
queue delay in a network to a defined value that can be
tolerated by voice, video and gaming applications. A survey
of these and other low-priority congestion control algorithms
has been provided in [14]. Although LEDBAT is relatively
new, research and experimentation of its operation have
begun. A review of the recent works on LEDBAT is given
as follows.

The works in [15], [16], [17], [5], [18], [6] show that
LEDBAT achieves some of its design objectives, but not

without some challenges under certain conditions. In [15],
the authors evaluated LEDBAT performance in a controlled
testbed and Internet experiment and found that TCP traffic
on the ”unrelated” backward path is capable of causing
LEDBAT to significantly underutilize the link capacity in
the forward path. It has been shown in [16] that LEDBAT
competes fairly with TCP in the worst case (i.e. LEDBAT
misconfiguration). Potential fairness issues such as late-
comer advantage between LEDBAT flows have been iden-
tified in LEDBAT [16] which can be fixed by using slow-
start in the LEDBAT algorithm. In addition to the proposed
solution for the LEDBAT intra-protocol unfairness by [16],
the authors of [17] proposed that random drops of LEDBAT
sender window and multiplicative decrease are promising so-
lutions to the problem of LEDBAT latecomer advantage. The
proposed solutions are not without a performance trade-off
between link utilization and fairness. Comparative analysis
of LEDBAT with other low priority protocols (TCP-NICE
and TCP-LP) in the presence of TCP showed that LEDBAT
achieves the lowest priority [5]. The authors further showed
via sensitivity analysis that unfairness exists between two
LEDBAT flows with different delay targets or different
network conditions and LEDBAT is aggressive with TCP
in the case of LEDBAT misconfiguration. The work in [18]
showed that there exists a large computational overhead with
the Python implementation of LEDBAT algorithm resulting
in underutilizing the available network bandwidth more than
TCP [18]. Our previous work in [6] analysed the impact
of different values of gain on LEDBAT throughput and
fairness. Based on the analysis, we proposed a dynamic gain
algorithm for stabilising LEDBAT sending rate.

Although several works have analysed the performance of
LEDBAT, to the best of our knowledge no work has studied
the impact of route changes on LEDBAT throughput and
fairness. This is unlike the works in [8], [9] that studied the
impact of route changes on the performance of TCP-Vegas.
The authors of [9] showed via packet level simulations that
route changes resulting in an increasing path delay severely
affect TCP-Vegas throughput. To solve the problem, they
proposed the use of any lasting increase in the RTT as
an indication of route changes. Compared to the solution
proposed in [9], the solution in [8] does not require any
critical parameter value.

In this paper, we make an effort to fill this gap and
quantify the impact of route changes on the throughput
and fairness of LEDBAT. Our focus is on the effect of
the average time between successive changes of path delay,
average magnitude of change of path delay, as well as the
effect of increasing and decreasing the path delay.

III. SCENARIO DESCRIPTION AND ASSUMPTIONS

Our network scenario is based on Figure 1. This represents
an ISP network with multiple customers representing traffic
sources and sending data to various destinations via a
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Figure 1. Network Topology

bottleneck link. The sources run file sharing applications
exploiting LEDBAT congestion control algorithm. For the
values of LEDBAT design parameters, we use 25ms and 40
for dtar and G, respectively [1]. The link delay between the
access routers is dcore, i.e. ”AccessRouter—AccessRouter”
shown in Figure 1. Although dcore is assigned to the
bottleneck link in Figure 1, it in fact represents the delay
across multiple links.

The following are the assumptions made for this analysis:
• As LEDBAT throughput when co-existing with other

traffic sources will be low most times, other sources
have finished their session and only LEDBAT traffic is
present in the access network.

• The uplink from the access router to the next router is
the bottleneck link in the path for end users, a typical
case in most ISP networks [3], [1]. The uplink has
capacity C. Therefore, the capacities of all other links
are greater than C.

• As access routers in most ISP networks lack AQM [1],
the router uses a FIFO drop-tail queue with maximum
size of B packets.

• The capacity of each link across every new route
beyond the ISP network is no less than C. This is
because the capacities of most links in the Internet
are usually in the order of gigabits or several hundreds
of megabits [19], [20]. Therefore, C still remains the
bottleneck after route changes.

• As a possible consequence of route changes in the
Internet is a significant change in the path delay of
the new route, dcore in Figure 1 and hence dpath are
not fixed but vary when LEDBAT is already in steady
state2.

• The path one-way delay from the source to destination
is the summation of all delays in the path and denoted
as dpath. That is, dpath = dcore + daccess + dque.

IV. MODELLING LEDBAT CONGESTION WINDOW
WHEN ROUTE CHANGES

LEDBAT congestion window can limit the throughput of
a LEDBAT source [4]. To provide a formal explanation of

2LEDBAT is in steady state when it has fully saturated the bottleneck
capacity and queue delay is approximately equal to the LEDBAT target
delay.

Table I
SYMBOLS USED WITH THEIR RESPECTIVE DEFINITIONS

Symbols Definitions
db Base one-way delay
dc Current one-way delay
Db A set of base one-way delays
Dc A set of current one-way delays

tupdate Update interval of Db

n Size of Db

∆davepath Average magnitude of change of dpath
tavechange Average time between successive changes of dpath

m Size of Dc

the behaviour of LEDBAT, we will present in this section a
model of LEDBAT congestion window when route changes.
Here and in Section V-D, we use ∆dpath in a general sense
to describe the case of increasing or decreasing path delay.
Two cases are considered. First is when ∆dpath < 0 while
the second is when ∆dpath > 0, where the path delay
of the old route (doldpath), the path delay of the new route
(dnewpath), and ∆dpath are related as ∆dpath = dnewpath− doldpath.
To mathematically express LEDBAT congestion window,
the next section formally describes how a LEDBAT source
updates the measured one-way delays. The definitions of
other symbols used in this paper are given in Table I.

A. LEDBAT Source Updating One-way Delays

A formal description of how a LEDBAT source updates
the lists of base and current one-way delays is presented in
this section. This will be used in mathematically explaining
the behaviour of LEDBAT congestion window when route
changes.

A LEDBAT source maintains a set of minimum one-
way delays updated every tupdate , expressed as Db ={
db1, d

b
2, . . . , d

b
n

}
where db1, d

b
2, . . . , d

b
n are previous base

one-way delays observed and n is bounded by 2 ≤ n ≤
nmax. By default, tupdate is 60 seconds and the maximum
size of Db (nmax) is 10 [1]. If n = nmax and the
time tupdate has elapsed, the earliest delay (db1) in Db is
discarded in order to allow the inclusion of the latest delay
in Db. However, for every one-way delay measured by the
LEDBAT source, if the time tupdate has not elapsed, dbn is
re-computed according to:

dbn =

{
dc if dc < dbn

dbn otherwise (2)

The source updates its congestion window w using a base
one-way, dbmin , which is the minimum base one-way delay
from previous observations, i.e. dbmin = min

(
Db
)
.

The LEDBAT source also maintains a set of current one-
way delays updated every time an ACK is received. Similar
to Db, the set can be expressed as Dc = {dc1, dc2, . . . , dcm}
where dc1, d

c
2, . . . , d

c
m are previous current one-way delays

observed and m is bounded by 1 ≤ m ≤ w(t)/2. If m =



w(t)/2 and a new one-way delay is measured, the earliest
one-way delay (dc1) is removed from Dc in order to allow Dc

to be updated. A minimum current one-way delay (dcmin ),
obtained from taking the minimum one-way delay in Dc, is
also used by the source in updating its congestion window.
That is, dcmin = min (Dc).

B. Case 1 of when ∆dpath < 0

In this case, we will re-write the equation of LEDBAT
congestion window in (1) when no packet loss, considering
the impact of a change in dpath such that dnewpath is less than
doldpath.

Note that dbmin = dpath and LEDBAT is already in
steady state before the change in dpath. This means that the
bottleneck link is already saturated and LEDBAT always
has packets in the bottleneck buffer. After the change in
dpath, each of dbi in Db is assumed to be greater than
dnewpath plus the actual queue delay (dque) where i = 1, ..., n.
This is because ∆dpath < 0. Upon receiving an ACK, the
minimum base delay becomes the new path delay plus queue
delay, i.e. dbmin = dbn = dnewpath + dque (see (2)). Similarly,
dcmin = dnewpath +dque because Dc is updated for every ACK
received. The source will estimate the queue delay to be zero
because dbmin = dcmin. Re-writing (1) when no packet loss,
we have the following equation representing the maximum
increase of w when d̂que = 0:

w(t+ 1) = w(t) +G
dtar
w(t)

(3)

Equation 3 shows that the LEDBAT source will assume
the access router queue is empty and increase its sending
rate until d̂que ≥ dtar. In effect an additional average queue
delay of approximately dtar is caused by the LEDBAT
source in steady state. Although this does not affect the
average LEDBAT throughput, the objective of keeping queue
delay as low as the target delay is compromised resulting in
an additional waiting time for newly arriving real-time traffic
and possibly impairing the performance of voice, video, and
game applications. Equation 3 also shows that the level
of impact of a change in dpath such that ∆dpath < 0 is
independent of the magnitude of ∆dpath instead it depends
on the target delay dtar.

C. Case 2 of when ∆dpath > 0

We now consider another case where dnewpath is greater than
doldpath and re-write (1) when no packet loss, considering the
impact of the change in dpath.

As in Case 1, dbmin = dpath and LEDBAT is already in
steady state before the change in dpath. After the change in
dpath, each of dbi in Db is assumed to be less than dnewpath

because ∆dpath > 0. Increasing the path delay increases the
bandwidth-delay product. When the path delay increases,
the number of packets in the queue decreases. That is,
more packets (excluding queued packets) in transit. Upon

the change in dpath and an ACK packet is received, dbn
remains unchanged before tupdate elapses. Even after a time
of tupdate and Db is updated, dbmin remains unchanged
until approximately a time of tupdate × n. As a result,
dbmin = doldpath. As Dc is updated every ACK received
and assuming a relatively small size of Dc depending on
the steady state congestion window of LEDBAT before the
change in dpath occurs, Dc is filled with the new one-way
delays such that dcmin = dnewpath.

Ideally, dbmin = doldpath + ∆dpath = dnewpath indicating that
the LEDBAT source has correctly estimated the base one-
way delay of the new route. The correctly estimated queue
delay is the ideal value and in this case it will be zero as
dcmin = dnewpath. As a result, the LEDBAT source congestion
window would have been updated using (3). However, the
source does the opposite and the actual estimated queue
delay of the new route is simply the change in the path
one-way delay, ∆dpath. We therefore re-write (1) when no
packet loss as:

w(t+ 1) = w(t) +G
dtar −∆dpath

w(t)
(4)

From (4), it can be inferred that the magnitude of the
change in the path one-way delay can limit the LEDBAT
throughput as w(t+ 1) < w(t) if ∆dpath > dtar. As dbmin

and hence dque remain incorrectly estimated for a time of
tupdate × n, w(t+ 1) will always be less than w(t) for the
same period of time resulting in an average access router
queue delay less than the LEDBAT target delay dtar.

V. PERFORMANCE ANALYSIS

In this section we present simulation results showing the
negative impacts of route changes on LEDBAT throughput
(of fully utilizing the bottleneck when no traffic exists)
and fairness (of keeping queue delay as low as the target
delay) under different conditions. Key performance metrics
are LEDBAT congestion window, access router queue delay,
and LEDBAT throughput. Note that where we report the
normalized throughput we mean the ratio of the actual
throughput to the ideal throughput.

A. Simulation Setup

The scenario described in Section III was simulated in
ns-2.34 [21] using a similar topology to Figure 1. We used
our implementation of the detailed LEDBAT algorithm in
ns-2.34 [6]. Every LEDBAT flow will respond accordingly
to changes in delay in the path and intra-protocol fairness
issues of LEDBAT have been analysed in [16], [17], [5].
Therefore, we consider a single LEDBAT source to simplify
the exposition. In the simulations, C = 2Mb/s and B = 100
packets while all other links are set to 100Mb/s capacity
and 5ms link delay. We used these values for C and the
capacity of other links because we want C to remain the
bottleneck. In all simulations, the default values of tupdate



and nmax are used. The following scenarios are considered
in our simulations:

Scenario 1: LEDBAT starts at time 0 and stops at time
60s. Path delay begins to vary at time 30s till the end of
LEDBAT session.

Scenario 2: LEDBAT starts at time 0 and stops at 900s.
Path delay changes once at time 120s.

Scenario 3: LEDBAT starts at time 0 and runs for 480s.
Path delay begins to vary at 30s till the end of LEDBAT
session.

Scenario 4: LEDBAT starts at time 0 and runs for 480s.
Path delay changes once at time 30s.

Based on studies of delay in the Internet [22], [23],
[24], we model varying path delay using two variables
each chosen from independent exponential distributions: the
average magnitude of change of path delay (∆davepath) and
the average time between successive changes of path delay
(tavechange).

Scenarios 1 and 3 consider the impact of ∆davepath and
tavechange. For this case, the value of dcore is set to 25ms such
that the new average value of dpath over a period of time is
no less than 25ms. We consider 30, 60, and 90 milliseconds
as the average magnitude of change of path delay. tavechange

is varied from 1 to 50 seconds with a default value of 1
second. In the LEDBAT algorithm, Db is normally updated
every tupdate. We consider the rate at which route changes
occur to be less than every tupdate. The case of when tavechange

is greater than tupdate is not considered because we expect
that the LEDBAT source to quickly detect such a change and
estimate the correct base one-way delay. Therefore, different
values of tavechange less than tupdate are used with default
value of 1s.

Scenarios 2 and 4 consider the impact of increasing and
decreasing the path one-way delay for at most once during
the LEDBAT session. For these scenarios, dcore is set to
120ms in order to investigate a large decrease in dpath.
Although instantaneous values were collected for Scenario
2, we allowed the simulations to last for 900s compared
to Scenario 1 because we are interested in showing the
behaviour of LEDBAT congestion window and the access
router queue delay during a period of nmax × tupdate . This
is a period after which a LEDBAT source maintains a new
set of measured one-way delays. The value of dcore, and
hence dpath, change once at time 120s.

B. Congestion Window and Queue Delay Over Time

Using Scenario 1, Figure 2 shows the time evolution of
LEDBAT congestion window and the access router queue
delay with different values of ∆davepath. Before dpath begins to
vary at time 30s, LEDBAT increases its congestion window
until it estimates the queue delay to be approximately equal
to a target delay of 25ms where it reaches steady state
and remains there until a time of 30s. At time 30s, dpath
starts to vary for different values of ∆davepath (30, 60, and 90

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60

C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
p

k
ts

)

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

Q
u

e
u

e
 D

e
la

y
 (

m
s
)

Time (s)

30ms Average Magnitude of Change of Path Delay
60ms Average Magnitude of Change of Path Delay
90ms Average Magnitude of Change of Path Delay

Figure 2. LEDBAT congestion window and the access router queue delay
for different average magnitude of change of path delay (∆davepath)

milliseconds). The results shown in Figure 2 illustrate how
LEDBAT responds to changes in the path one-way delay
every 1s. Additionally, they show the increasing negative
impact on LEDBAT congestion window as we increase the
average magnitude of change in the path delay (∆davepath)
from 30 to 60 milliseconds. LEDBAT behaves this way
because of incorrect estimation of the base one-way delay
within the time of tavechange. As it will be shown later
in Section V-C, this can lead to underutilization of the
available bottleneck capacity, compromising the objective of
saturating the bottleneck link when no traffic exists.

Figure 3 shows the behaviour of LEDBAT congestion
window and the access router queue delay over time when
the delay of the new path is less than that of the old path,
i.e. ∆dpath < 0, for Scenario 2. In this case, the change
in dpath is fixed and occurs once at time 120s. Although
LEDBAT detects that dpath has changed at 120s as indicated
by the changes in the trend of the curves of its congestion
window and access router queue delay, an additional queue
delay of approximately 25ms is induced by the LEDBAT
source (see (3)). This does not affect the throughput for
the LEDBAT source but results in an extra queue delay of
approximately target delay, thus not meeting the objective
of keeping queue delay as low as the target delay. Upon
the arrival of traffic from low-latency tolerant applications
in the same access network, the additional queue delay
may degrade the performance of such applications. At time
840s, the queue delay is increased for an additional value
of approximately target delay. This is because the access
router queue is never empty to allow the correct estimation
of the base one-way delay of the new route, even when Db

contains a new set of one-way delays.
It has been shown that the fairness objective of LEDBAT

of keeping queue delay as low as the target delay may not
be met for the change in dpath such that ∆dpath < 0.
We now present results showing how LEDBAT congestion
window reverts to its minimum value of 1 packet due
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Figure 3. LEDBAT congestion window and the access router queue delay
for the case of when ∆dpath is less than zero and the change in the route
is fixed and occurs once

to wrong base one-way delay estimation by the LEDBAT
source for the case of when ∆dpath > 0 in Figure 4, causing
underutilization of the bottleneck capacity.

Considering Scenario 2, the results given in Figure 4
shows the behaviour of LEDBAT congestion window and
the access router queue delay over time for different amount
of increasing dpath. At time 120s, different magnitude of
∆dpath causes different decreasing rates of LEDBAT con-
gestion window (see (4)). This results in LEDBAT conges-
tion window reaching its minimum value at approximately
130s for ∆dpath = +60ms and 190s for ∆dpath = +30ms.
The LEDBAT congestion window remains at the minimum
value until the source accurately estimates the base one-way
delay at times 720s and 840s. The different values are due to
the different changes in dpath. Before these times, the queue
of the access router is observed to be empty thus allowing
the LEDBAT source to accurately measure the new base one-
way delay. At the times 720s and 840s, all the previously
measured base one-way delays before the change in dpath
have been popped out from Db leaving behind only the
base one-way delays measured after the change occurs. An
indication that the LEDBAT source has correctly measured
the base one-way delay in its path is the access router queue
delay observed to increase until it reaches the target delay,
including the congestion window as shown in Figure 4.
These results validate our discussion in Section IV, showing
that the magnitude of ∆dpath can significantly impact the
LEDBAT congestion window and hence throughput.

In addition to the performance of LEDBAT over time, we
present results in subsequent sections showing the perfor-
mance of LEDBAT on the average when route changes.

C. Effect of the Average Time Between Successive Changes
of Path Delay (tavechange)

For Scenario 3, several simulations are run for 480s
using different values of tavechange and ∆davepath for 20 seed
numbers. We use the values of ∆davepath to represent the
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Figure 4. LEDBAT congestion window and the access router queue delay
for the case of when ∆dpath is greater than zero and the change in the
route is fixed and occurs once

magnitudes of increase in dpath. Average and normalized
values of LEDBAT throughput, average access router queue
delay, and 95% confidence interval of LEDBAT throughput
were collected. We started to record all statistics when dcore
begins to vary at time 30s. The results in Figure 5, Figure 6,
and Table II represent average values of 20 seed numbers.

Figure 5 shows the increasing normalized LEDBAT
throughput as we increase the average times between succes-
sive changes of path delay with different average magnitude
of change of path delay (30, 60, and 90 milliseconds)
considering Scenario 3. The figure illustrates the increasing
negative impact of route changes on the throughput of
LEDBAT as ∆davepath increases from 30 to 90 milliseconds.
LEDBAT throughput decreases as tavechange decreases. This
is due to the frequent decrease and increase of LEDBAT
congestion window shown in Figure 2. Figure 6 shows that
the average queue delay for 30ms average magnitude of
change of path delay is higher than 60 and 90 milliseconds
average magnitude of change of path delays. Higher average
queue delay means that the LEDBAT source sends more
packets. This leads to an increased utilization of the bottle-
neck link and hence increased throughput shown in Figure 5.
In Figure 5, the normalized throughput is observed to be no
greater than 0.7. This is due to the fact that the sending rate
of a LEDBAT is unstable in the presence of delay variability
as LEDBAT congestion window equation depends on delay
in a network (see (1) when no packet loss).

Table II shows the increasing average throughput of LED-
BAT, including the 95% confidence interval, as the average
time between successive changes of path delay (tavechange)
increases for each value of the average magnitude of change
of path delay (∆davepath) for Scenario 3. We include the 95%
confidence interval of the average LEDBAT throughput in
Table II to show the accuracy of our results.
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Figure 5. Normalized throughput of LEDBAT for different average
magnitude of change of path delay (∆davepath) and the average time between
successive changes of path delay (tavechange) using 20 seed numbers
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Figure 6. Average queue delay at the access router for different average
magnitude of change of path delay (∆davepath) and the average time between
successive changes of path delay (tavechange) using 20 seed numbers

D. Effect of Decreasing and Increasing dpath
We now present results for Scenario 4 using different

values of ∆dpath. Route changes once at time 30s and the
normalized LEDBAT throughput and average access router
queue delay are recorded from 30s to 480s for each value
of ∆dpath. Here we consider a fixed change in dpath and
not average from exponential distribution.

Using Scenario 4, the results in Figure 7 show that
LEDBAT throughput is unaffected by any change in dpath
such that ∆dpath < 0. However, as ∆dpath increases beyond
zero, the throughput is observed to decline to a value that
is less than 20% of the ideal throughput of approximately
2Mb/s. This is due to the incorrect estimation of the base
one-way delay by the LEDBAT source when the change
in dpath occurs. The incorrect estimation of the base one-
way delay leads LEDBAT to unduly decrease its congestion
window when the change in dpath is greater than the target
delay (see (4)).

Although LEDBAT throughput is unaffected when

Table II
AVERAGE AND 95% CONFIDENCE INTERVAL OF LEDBAT

THROUGHPUT FOR DIFFERENT AVERAGE MAGNITUDE OF CHANGE OF
PATH DELAY (∆davepath) AND THE AVERAGE TIME BETWEEN SUCCESSIVE

CHANGES OF PATH DELAY (tavechange) USING 20 SEED NUMBERS.

LEDBAT Throughput (Kb/s)
∆davepath (ms) tavechange (s) Average 95% Conf Interval

30

1 1132.07 26.4727
10 1251.3 62.1605
20 1254.62 75.8655
30 1388.63 98.2036
40 1401.34 98.2207
50 1409 107.673

60

1 548.087 17.1893
10 794.383 33.9203
20 825.614 58.4188
30 949.374 81.5401
40 1001.57 102.897
50 1043.5 107.28

90

1 361.411 13.4631
10 599.128 37.5438
20 622.239 62.2093
30 742.398 70.9021
40 802.369 109.14
50 852.302 124.786
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Figure 7. Normalized throughput of LEDBAT for different amount of
decreasing and increasing the path one-way delay across a route

∆dpath < 0, results in Figure 8 show that additional queue
delay at the access router is caused by the source. This
can lead to more waiting time in the access router queue
for newly arriving traffic generated by low-delay tolerant
applications. This is due to the wrong base one-way delay
estimation by the LEDBAT source (see Section IV). For
the case of when ∆dpath > 0, the results in Figure 8 also
show that the decreasing LEDBAT throughput caused by
∆dpath increasing beyond zero in Figure 7 is as a result of
the average queue delay at the access router less than the
target delay.

VI. CONCLUSION

This paper has analysed the impact of delay variability
due to route changes on the performance of LEDBAT. We
give a formal explanation of the behaviour of LEDBAT
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Figure 8. Average queue delay at the access router for different amount
of decreasing and increasing the path one-way delay across a route

congestion window when route changes and later consider
the effects of the average time between successive changes
of path delay and decreasing/increasing path delay across
the new route. Our results from several simulations show
the negative impact of route changes on the performance
of LEDBAT in terms of throughput for a LEDBAT source
and fairness with other sources due to incorrect estimation
of base one-way delay by the LEDBAT source. In effect,
the key LEDBAT objectives of fully utilizing the bottleneck
capacity when no traffic exists and of keeping queue delay
as low as the target delay may not always be met especially
when route changes. In future, we will develop techniques
that can make LEDBAT more robust and responsive to route
changes thus still meeting the key objectives of throughput
and fairness.
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